Charge Transfer Processes in Condensed Media

Charge Transfer Processes in Condensed Media

by J. Ulstrup

Paperback(Softcover reprint of the original 1st ed. 1979)

Choose Expedited Shipping at checkout for guaranteed delivery by Wednesday, November 21

Product Details

ISBN-13: 9783540095200
Publisher: Springer Berlin Heidelberg
Publication date: 09/14/1979
Series: Lecture Notes in Chemistry , #10
Edition description: Softcover reprint of the original 1st ed. 1979
Pages: 420
Product dimensions: 6.10(w) x 9.25(h) x 0.03(d)

Table of Contents

1 Introduction.- 1.1 Nature of Elementary Chemical Processes.- 1.2 Development of Theories for Elementary Chemical Processes.- 1.3 Chemical Reactions as a Class of Radiationless Processes.- 2 Multiphonon Representation of Continuous Media.- 2.1 Nature of Solvent Configuration Fluctuations.- 2.2 Interaction with Ionic Charges.- 2.3 Relation to Macroscopic Parameters.- 3 Quantum Mechanical Formulation of Rate Theory.- 3.1 Elements of Scattering Theory.- 3.2 Channel States and Nature of the Perturbation.- 3.3 Evaluation of Transition Matrix Elements.- 3.3.1 Harmonic Oscillator Representation.- 3.4 The Role of a Continuous Vibration Spectrum.- 3.5 Relation to Experimental Data.- 3.5.1 The Electronic Factor.- 3.5.2 Intramolecular and Medium-induced Electronic Relaxation.- 3.6 Lineshape of Optical Transitions.- 4 The Effect of Intramolecular Modes.- 4.1 Special Features of Electron Transfer Processes.- 4.2 Quantum Modes in Electron Transfer Reactions.- 4.2.1 Displaced Potential Surfaces..- 4.2.2 Effects of Frequency Changes.- 4.2.3 Effects of Anharmonicity.- 4.3 Relation to Experimental Data.- 5 Semiclassical Approximations.- 5.1 One-Dimensional Nuclear Motion.- 5.1.1 Classical Nuclear Motion.- 5.1.2 Nuclear Quantum Effects.- 5.2 Many-Dimensional Nuclear Motion.- 5.3 Relation to Experimental Data.- 5.3.1 Outer Sphere Electron Transfer Processes.- 5.3.2 Nucleophilic Substitution Reactions.- 6 Atom Group Transfer Processes.- 6.1 General Features of Nuclear Motion.- 6.2 Semiclassical Approaches to Atom Group Transfer.- 6.3 Quantum Mechanical Formulation of Atom Group Transfer.- 6.3.1 Nuclear Tunnelling between Bound States.- 6.3.2 Adiabatic and Nonadiabatic AT.- 6.3.3 Relation to the Gamov Tunnelling Factor.- 6.4 Relation to Experimental Data.- 7 Higher Order Processes.- 7.1 Higher Order Processes in Chemical ET Reactions.- 7.2 Theoretical Formulation of Higher Order Rate Probability.- 7.2.1 Semiclassical Methods..- 7.2.2 The Effect of High-Frequency Modes..- 7.2.3 Adiabatic Second Order Processes.- 7.2.4 Quantum Mechanical Formulation.- 7.3 Relation to Experimental Data.- 8 Electrochemical Processes.- 8.1 Fundamental Properties of Electrochemical Reactions.- 8.1.1 The nonuniform dielectric medium.- 8.1.2 The continuous electronic spectrum.- 8.1.3 Adiabaticity effects in many-potential surface systems.- 8.2 Quantum Mechanical Formulation of Electrode Kinetics.- 8.2.1 Metal electrodes.- 8.2.2 Semiconductor electrode.- 8.3 Relation to Experimental Data.- 8.3.1 The current-voltage relationship.- 8.3.2 The nature of the substrate electrode.- 8.3.3 The electrochemical hydrogen evolution reaction (her).- 8.4 Electrode Processes at Film Covered Electrodes.- 8.4.1 Tunnelling mechanisms.- 8.4.2 Mobility mechanisms.- 9 Application of the Rate Theory to Biological Systems.- 9.1 General.- 9.2 Specific Biological Electron Transfer Systems.- 9.2.1 Primary Photosynthetic Events.- 9.2.2 Bioinorganic ET Reactions.- 9.3 Electronic Conduction in Biological Systems.- 9.4 Conformational Dynamics.- A1.- A1.1 Derivation of the Sum Rules(eq.(2.49)).- A1.2 Derivation of Eq.(2.56).- References.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews