Charge Transfer Processes in Condensed Media

Charge Transfer Processes in Condensed Media

by J. Ulstrup

Paperback(Softcover reprint of the original 1st ed. 1979)

$129.00
Choose Expedited Shipping at checkout for guaranteed delivery by Wednesday, November 21

Product Details

ISBN-13: 9783540095200
Publisher: Springer Berlin Heidelberg
Publication date: 09/14/1979
Series: Lecture Notes in Chemistry , #10
Edition description: Softcover reprint of the original 1st ed. 1979
Pages: 420
Product dimensions: 6.10(w) x 9.25(h) x 0.03(d)

Table of Contents

1 Introduction.- 1.1 Nature of Elementary Chemical Processes.- 1.2 Development of Theories for Elementary Chemical Processes.- 1.3 Chemical Reactions as a Class of Radiationless Processes.- 2 Multiphonon Representation of Continuous Media.- 2.1 Nature of Solvent Configuration Fluctuations.- 2.2 Interaction with Ionic Charges.- 2.3 Relation to Macroscopic Parameters.- 3 Quantum Mechanical Formulation of Rate Theory.- 3.1 Elements of Scattering Theory.- 3.2 Channel States and Nature of the Perturbation.- 3.3 Evaluation of Transition Matrix Elements.- 3.3.1 Harmonic Oscillator Representation.- 3.4 The Role of a Continuous Vibration Spectrum.- 3.5 Relation to Experimental Data.- 3.5.1 The Electronic Factor.- 3.5.2 Intramolecular and Medium-induced Electronic Relaxation.- 3.6 Lineshape of Optical Transitions.- 4 The Effect of Intramolecular Modes.- 4.1 Special Features of Electron Transfer Processes.- 4.2 Quantum Modes in Electron Transfer Reactions.- 4.2.1 Displaced Potential Surfaces..- 4.2.2 Effects of Frequency Changes.- 4.2.3 Effects of Anharmonicity.- 4.3 Relation to Experimental Data.- 5 Semiclassical Approximations.- 5.1 One-Dimensional Nuclear Motion.- 5.1.1 Classical Nuclear Motion.- 5.1.2 Nuclear Quantum Effects.- 5.2 Many-Dimensional Nuclear Motion.- 5.3 Relation to Experimental Data.- 5.3.1 Outer Sphere Electron Transfer Processes.- 5.3.2 Nucleophilic Substitution Reactions.- 6 Atom Group Transfer Processes.- 6.1 General Features of Nuclear Motion.- 6.2 Semiclassical Approaches to Atom Group Transfer.- 6.3 Quantum Mechanical Formulation of Atom Group Transfer.- 6.3.1 Nuclear Tunnelling between Bound States.- 6.3.2 Adiabatic and Nonadiabatic AT.- 6.3.3 Relation to the Gamov Tunnelling Factor.- 6.4 Relation to Experimental Data.- 7 Higher Order Processes.- 7.1 Higher Order Processes in Chemical ET Reactions.- 7.2 Theoretical Formulation of Higher Order Rate Probability.- 7.2.1 Semiclassical Methods..- 7.2.2 The Effect of High-Frequency Modes..- 7.2.3 Adiabatic Second Order Processes.- 7.2.4 Quantum Mechanical Formulation.- 7.3 Relation to Experimental Data.- 8 Electrochemical Processes.- 8.1 Fundamental Properties of Electrochemical Reactions.- 8.1.1 The nonuniform dielectric medium.- 8.1.2 The continuous electronic spectrum.- 8.1.3 Adiabaticity effects in many-potential surface systems.- 8.2 Quantum Mechanical Formulation of Electrode Kinetics.- 8.2.1 Metal electrodes.- 8.2.2 Semiconductor electrode.- 8.3 Relation to Experimental Data.- 8.3.1 The current-voltage relationship.- 8.3.2 The nature of the substrate electrode.- 8.3.3 The electrochemical hydrogen evolution reaction (her).- 8.4 Electrode Processes at Film Covered Electrodes.- 8.4.1 Tunnelling mechanisms.- 8.4.2 Mobility mechanisms.- 9 Application of the Rate Theory to Biological Systems.- 9.1 General.- 9.2 Specific Biological Electron Transfer Systems.- 9.2.1 Primary Photosynthetic Events.- 9.2.2 Bioinorganic ET Reactions.- 9.3 Electronic Conduction in Biological Systems.- 9.4 Conformational Dynamics.- A1.- A1.1 Derivation of the Sum Rules(eq.(2.49)).- A1.2 Derivation of Eq.(2.56).- References.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews