Chiral and Topological Nature of Magnetic Skyrmions
This book focuses on the characterisation of the chiral and topological nature of magnetic skyrmions in noncentrosymmetric helimagnets. In these materials, the skyrmion lattice phase appears as a long-range-ordered, close-packed grid of nearly millimetre-level correlation length, while the size of a single skyrmion is 3–100 nm. This is a very challenging range of length scales (spanning 5 orders of magnitude from tens of nm to mm) for magnetic characterisation techniques, and, to date, extensive information on this fascinating, magnetically ordered state has remained elusive. In response, this work develops novel resonant elastic x-ray scattering (REXS) techniques, which allow the magnetic structure, including the long-range order and domain formation, as well as microscopic skyrmion parameters, to be measured across the full range of length scales. Most importantly, using circular dichroism in REXS, the internal structure of a given skyrmion, the topological winding number, and theskyrmion helicity angle can all be unambiguously determined. These new techniques are applicable to many materials systems, and allow us to retrieve information on modulated spin structures, multiferroic order, spin-density-waves, and other forms of topological magnetic order.


1133188475
Chiral and Topological Nature of Magnetic Skyrmions
This book focuses on the characterisation of the chiral and topological nature of magnetic skyrmions in noncentrosymmetric helimagnets. In these materials, the skyrmion lattice phase appears as a long-range-ordered, close-packed grid of nearly millimetre-level correlation length, while the size of a single skyrmion is 3–100 nm. This is a very challenging range of length scales (spanning 5 orders of magnitude from tens of nm to mm) for magnetic characterisation techniques, and, to date, extensive information on this fascinating, magnetically ordered state has remained elusive. In response, this work develops novel resonant elastic x-ray scattering (REXS) techniques, which allow the magnetic structure, including the long-range order and domain formation, as well as microscopic skyrmion parameters, to be measured across the full range of length scales. Most importantly, using circular dichroism in REXS, the internal structure of a given skyrmion, the topological winding number, and theskyrmion helicity angle can all be unambiguously determined. These new techniques are applicable to many materials systems, and allow us to retrieve information on modulated spin structures, multiferroic order, spin-density-waves, and other forms of topological magnetic order.


109.99 In Stock
Chiral and Topological Nature of Magnetic Skyrmions

Chiral and Topological Nature of Magnetic Skyrmions

by Shilei Zhang
Chiral and Topological Nature of Magnetic Skyrmions

Chiral and Topological Nature of Magnetic Skyrmions

by Shilei Zhang

Paperback(Softcover reprint of the original 1st ed. 2018)

$109.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This book focuses on the characterisation of the chiral and topological nature of magnetic skyrmions in noncentrosymmetric helimagnets. In these materials, the skyrmion lattice phase appears as a long-range-ordered, close-packed grid of nearly millimetre-level correlation length, while the size of a single skyrmion is 3–100 nm. This is a very challenging range of length scales (spanning 5 orders of magnitude from tens of nm to mm) for magnetic characterisation techniques, and, to date, extensive information on this fascinating, magnetically ordered state has remained elusive. In response, this work develops novel resonant elastic x-ray scattering (REXS) techniques, which allow the magnetic structure, including the long-range order and domain formation, as well as microscopic skyrmion parameters, to be measured across the full range of length scales. Most importantly, using circular dichroism in REXS, the internal structure of a given skyrmion, the topological winding number, and theskyrmion helicity angle can all be unambiguously determined. These new techniques are applicable to many materials systems, and allow us to retrieve information on modulated spin structures, multiferroic order, spin-density-waves, and other forms of topological magnetic order.



Product Details

ISBN-13: 9783030074722
Publisher: Springer International Publishing
Publication date: 01/18/2019
Series: Springer Theses
Edition description: Softcover reprint of the original 1st ed. 2018
Pages: 117
Product dimensions: 6.10(w) x 9.25(h) x (d)

About the Author

Shilei Zhang received his B.Eng. and M.Eng. degrees in Materials Physics from the University of Science and Technology Beijing. As a visiting scientist in Oxford's Clarendon Laboratory, he worked on magnetic devices, before joining in 2012 as a D.Phil. student in physics under the supervision of Prof. Thorsten Hesjedal.

Table of Contents

The Story so Far.- Measurement of the Magnetic Long-range Order.- Measurement of the Skyrmion Lattice Domains.- Measurement of the Topological Winding Number.- Measurement of the Skyrmion Helicity Angle.- Dichroism Extinction Rule.

From the B&N Reads Blog

Customer Reviews