Complexity and Real Computation
Computational complexity theory provides a framework for understanding the cost of solving computational problems, as measured by the requirement for resources such as time and space. The objects of study are algorithms defined within a formal model of computation. Upper bounds on the computational complexity of a problem are usually derived by constructing and analyzing specific algorithms. Meaningful lower bounds on computational complexity are harder to come by, and are not available for most problems of interest. The dominant approach in complexity theory is to consider algorithms as oper­ ating on finite strings of symbols from a finite alphabet. Such strings may represent various discrete objects such as integers or algebraic expressions, but cannot rep­ resent real or complex numbers, unless the numbers are rounded to approximate values from a discrete set. A major concern of the theory is the number of com­ putation steps required to solve a problem, as a function of the length of the input string.
1101496330
Complexity and Real Computation
Computational complexity theory provides a framework for understanding the cost of solving computational problems, as measured by the requirement for resources such as time and space. The objects of study are algorithms defined within a formal model of computation. Upper bounds on the computational complexity of a problem are usually derived by constructing and analyzing specific algorithms. Meaningful lower bounds on computational complexity are harder to come by, and are not available for most problems of interest. The dominant approach in complexity theory is to consider algorithms as oper­ ating on finite strings of symbols from a finite alphabet. Such strings may represent various discrete objects such as integers or algebraic expressions, but cannot rep­ resent real or complex numbers, unless the numbers are rounded to approximate values from a discrete set. A major concern of the theory is the number of com­ putation steps required to solve a problem, as a function of the length of the input string.
109.0 In Stock
Complexity and Real Computation

Complexity and Real Computation

Complexity and Real Computation

Complexity and Real Computation

Hardcover(1998)

$109.00 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Computational complexity theory provides a framework for understanding the cost of solving computational problems, as measured by the requirement for resources such as time and space. The objects of study are algorithms defined within a formal model of computation. Upper bounds on the computational complexity of a problem are usually derived by constructing and analyzing specific algorithms. Meaningful lower bounds on computational complexity are harder to come by, and are not available for most problems of interest. The dominant approach in complexity theory is to consider algorithms as oper­ ating on finite strings of symbols from a finite alphabet. Such strings may represent various discrete objects such as integers or algebraic expressions, but cannot rep­ resent real or complex numbers, unless the numbers are rounded to approximate values from a discrete set. A major concern of the theory is the number of com­ putation steps required to solve a problem, as a function of the length of the input string.

Product Details

ISBN-13: 9780387982816
Publisher: Springer New York
Publication date: 10/30/1997
Edition description: 1998
Pages: 453
Product dimensions: 6.10(w) x 9.25(h) x 0.04(d)

Table of Contents

1 Introduction.- 2 Definitions and First Properties of Computation.- 3 Computation over a Ring.- 4 Decision Problems and Complexity over a Ring.- 5 The Class NP and NP-Complete Problems.- 6 Integer Machines.- 7 Algebraic Settings for the Problem “P— NP?”.- 8 Newton’s Method.- 9 Fundamental Theorem of Algebra: Complexity Aspects.- 10 Bézout’s Theorem.- 11 Condition Numbers and the Loss of Precision of Linear Equations.- 12 The Condition Number for Nonlinear Problems.- 13 The Condition Number in—(H(d).- 14 Complexity and the Condition Number.- 15 Linear Programming.- 16 Deterministic Lower Bounds.- 17 Probabilistic Machines.- 18 Parallel Computations.- 19 Some Separations of Complexity Classes.- 20 Weak Machines.- 21 Additive Machines.- 22 Nonuniform Complexity Classes.- 23 Descriptive Complexity.- References.
From the B&N Reads Blog

Customer Reviews