Computational Linear Algebra: with Applications and MATLAB® Computations
Courses on linear algebra and numerical analysis need each other. Often NA courses have some linear algebra topics, and LA courses mention some topics from numerical analysis/scientific computing. This text merges these two areas into one introductory undergraduate course. It assumes students have had multivariable calculus. A second goal of this text is to demonstrate the intimate relationship of linear algebra to applications/computations.

A rigorous presentation has been maintained. A third reason for writing this text is to present, in the first half of the course, the very important topic on singular value decomposition, SVD. This is done by first restricting consideration to real matrices and vector spaces. The general inner product vector spaces are considered starting in the middle of the text.

The text has a number of applications. These are to motivate the student to study the linear algebra topics. Also, the text has a number of computations. MATLAB® is used, but one could modify these codes to other programming languages. These are either to simplify some linear algebra computation, or to model a particular application.

1142221870
Computational Linear Algebra: with Applications and MATLAB® Computations
Courses on linear algebra and numerical analysis need each other. Often NA courses have some linear algebra topics, and LA courses mention some topics from numerical analysis/scientific computing. This text merges these two areas into one introductory undergraduate course. It assumes students have had multivariable calculus. A second goal of this text is to demonstrate the intimate relationship of linear algebra to applications/computations.

A rigorous presentation has been maintained. A third reason for writing this text is to present, in the first half of the course, the very important topic on singular value decomposition, SVD. This is done by first restricting consideration to real matrices and vector spaces. The general inner product vector spaces are considered starting in the middle of the text.

The text has a number of applications. These are to motivate the student to study the linear algebra topics. Also, the text has a number of computations. MATLAB® is used, but one could modify these codes to other programming languages. These are either to simplify some linear algebra computation, or to model a particular application.

63.99 In Stock
Computational Linear Algebra: with Applications and MATLAB® Computations

Computational Linear Algebra: with Applications and MATLAB® Computations

by Robert E. White
Computational Linear Algebra: with Applications and MATLAB® Computations

Computational Linear Algebra: with Applications and MATLAB® Computations

by Robert E. White

Hardcover

$63.99 
  • SHIP THIS ITEM
    In stock. Ships in 2-4 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Courses on linear algebra and numerical analysis need each other. Often NA courses have some linear algebra topics, and LA courses mention some topics from numerical analysis/scientific computing. This text merges these two areas into one introductory undergraduate course. It assumes students have had multivariable calculus. A second goal of this text is to demonstrate the intimate relationship of linear algebra to applications/computations.

A rigorous presentation has been maintained. A third reason for writing this text is to present, in the first half of the course, the very important topic on singular value decomposition, SVD. This is done by first restricting consideration to real matrices and vector spaces. The general inner product vector spaces are considered starting in the middle of the text.

The text has a number of applications. These are to motivate the student to study the linear algebra topics. Also, the text has a number of computations. MATLAB® is used, but one could modify these codes to other programming languages. These are either to simplify some linear algebra computation, or to model a particular application.


Product Details

ISBN-13: 9781032302461
Publisher: CRC Press
Publication date: 04/21/2023
Series: Textbooks in Mathematics
Pages: 330
Product dimensions: 6.12(w) x 9.19(h) x (d)

About the Author

Robert E. White is Professor Emeritus, North Carolina State University. He is also the author of Computational Mathematics: Models, Methods, Analysis with MATLAB® and MPI, second edition and Elements of Matrix Modeling and Computing with MATLAB®, both published by CRC Press.

Table of Contents

1. Solution of AX = d. 2. Matrix Factorizations. 3. Least Squares and Normal Equations. 4. Ax = d with m<n. 5. Orthogonal Subspaces and Bases. 6. Eigenvectors and Orthonormal Basis. 7. Singular Value Decomposition. 8. Three Applications of SVD. 9. Pseudoinverse of A. 10. General Inner Product Vector Spaces. 11. Iterative Methods. 12. Nonlinear Problems and Least Squares.

From the B&N Reads Blog

Customer Reviews