Computational Physics: An Introduction To Monte Carlo Simulations Of Matrix Field Theory available in Hardcover, eBook

Computational Physics: An Introduction To Monte Carlo Simulations Of Matrix Field Theory
- ISBN-10:
- 9813200219
- ISBN-13:
- 9789813200210
- Pub. Date:
- 04/10/2017
- Publisher:
- World Scientific Publishing Company, Incorporated
- ISBN-10:
- 9813200219
- ISBN-13:
- 9789813200210
- Pub. Date:
- 04/10/2017
- Publisher:
- World Scientific Publishing Company, Incorporated

Computational Physics: An Introduction To Monte Carlo Simulations Of Matrix Field Theory
Buy New
$128.00-
SHIP THIS ITEMIn stock. Ships in 1-2 days.PICK UP IN STORE
Your local store may have stock of this item.
Available within 2 business hours
Overview
Product Details
ISBN-13: | 9789813200210 |
---|---|
Publisher: | World Scientific Publishing Company, Incorporated |
Publication date: | 04/10/2017 |
Pages: | 312 |
Product dimensions: | 6.90(w) x 9.70(h) x 0.70(d) |
Table of Contents
Preface vii
Introductory Remarks xv
Introduction to Computational Physics 1
1 Euler Algorithm 3
1.1 Euler Algorithm 3
1.2 First Example and Sample Code 4
1.2.1 Radioactive Decay 4
1.2.2 A Sample Fortran Code 6
1.3 More Examples 7
1.3.1 Air Resistance 7
1.3.2 Projectile Motion 9
1.4 Periodic Motions and Euler-Cromer and Verlet Algorithms 10
1.4.1 Harmonic Oscillator 10
1.1.1 Euler Algorithm 11
1.4.1 Euler-Cromer Algorithm 12
1.4.2 Verlet Algorithm 13
1.5 Exercises 13
1.6 Simulation 1: Euler Algorithm - Air Resistance 14
1.7 Simulation 2: Euler Algorithm - Projectile Motion 15
1.8 Simulation 3: Euler, Fuler-Cromer and Verlet Algorithms 16
2 Classical Numerical Integration 17
2.1 Rectangular Approximation 17
2.2 Trapezoidal Approximation 18
2.3 Parabolic Approximation or Simpson's Rule 18
2.4 Errors 20
2.5 Simulation 4: Numerical Integrals 21
3 Newton-Raphson Algorithms and Interpolation 23
3.1 Bisection Algorithm 23
3.2 Newton-Raphson Algorithm 23
3.3 Hybrid Method 24
3.4 Lagrange Interpolation 25
3.5 Cubic Spline Interpolation 26
3.6 The Method of Least Squares 28
3.7 Simulation 5: Newton Raphson Algorithm 29
4 The Solar System: The Runge-Kutta Methods 31
4.1 The Solar System 31
4.1.1 Newton's Second Law 31
4.1.2 Astronomical Units and Initial Conditions 32
4.1.3 Kepler's Laws 32
4.1.4 The Inverse-Square Law and Stability of Orbits 34
4.2 Euler Cromer Algorithm 35
4.3 The Runge-Kutta Algorithm 36
4.3.1 The Method 36
4.3.2 Example 1: The Harmonic Oscillator 37
4.3.3 Example 2: The Solar System 37
4.4 Precession of the Perihelion of Mercury 39
4.5 Exercises 39
4.6 Simulation 6: Runge-Kutta Algorithm: Solar System 40
4.7 Simulation 7: Precession of the perihelion of Mercury 41
5 Chaotic Pendulum 43
5.1 Equation of Motion 43
5.2 Numerical Algoritlmis 45
5.2.1 Euler Cromer Algorithm 46
5.2.2 Runge-Kutta Algorithm 46
5.3 Elements of Chaos 47
5.3.1 Butterfly Effect: Sensitivity to Initial Conditions 47
5.3.2 Poincaré Section and Attractors 48
5.3.3 Period-Doubling Bifurcations 48
5.3.4 Feigenbaum Ratio 49
5.3.5 Spontaneous Symmetry Breaking 49
5.4 Simulation 8: The Butterfly Effect 50
5.5 Simulation 9: Poincare Sections 50
5.6 Simulation 10: Period Doubling 52
5.7 Simulation 11: Bifurcation Diagrams 53
6 Molecular Dynamics 55
6.1 Introduction 55
6.2 The Lennard-Jones Potential 56
6.3 Units, Boundary Conditions and Verlet Algorithm 57
6.4 Some Physical Applications 59
6.4.1 Dilute Gas and Maxwell Distribution 59
6.4.2 The Melting Transition 60
6.5 Simulation 12: Maxwell Distribution 60
6.6 Simulation 13: Melting Transition 61
7 Pseudo Random Numbers and Random Walks 63
7.1 Random Numbers 63
7.1.1 Linear Congruent or Power Residue Method 63
7.1.2 Statistical Tests of Randomness 64
7.2 Random Systems 66
7.2.1 Random Walks 66
7.2.2 Diffusion Equation 67
7.3 The Random Number Generators RAN 0,1,2 69
7.4 Simulation 14: Random Numbers
7.5 Simulation 15: Random Walks 73
8 Monte Carlo Integration 75
8.1 Numerical Integration 75
8.1.1 Rectangular Approximation Revisited 75
8.1.2 Midpoint Approximation of Multidimensional Integrals 76
8.1.3 Spheres and Balls in d Dimensions 78
8.2 Monte Carlo Integration: Simple Sampling 78
8.2.1 Sampling (Hit or Miss) Method 79
8.2.2 Sample Mean Method 79
8.2.3 Sample Mean Method in Higher Dimensions 80
8.3 The Central Limit Theorem 81
8.4 Monte Carlo Errors and Standard Deviation 82
8.5 Nonuniform Probability Distributions 84
8.5.1 The Inverse Transform Method 84
8.5.2 The Acceptance-Rejection Method 86
8.6 Simulation 16: Midpoint and Monte Carlo Approximations 86
8.7 Simulation 17: Nonuniform Probability Distributions 87
9 The Metropolis Algorithm and the Ising Model 89
9.1 The Canonical Ensemble 89
9.2 Importance Sampling 90
9.3 The Ising Model 91
9.4 The Metropolis Algorithm 92
9.5 The Heat-Bath Algorithm 94
9.6 The Mean Field Approximation 94
9.6.1 Phase Diagram and Critical Temperature 94
9.6.2 Critical Exponents 96
9.7 Simulation of the Ising Model and Numerical Results 97
9.7.1 The Fortran Code 97
9.7.2 Some Numerical Results 99
9.8 Simulation 18: The Metropolis Algorithm and the Ising Model 101
9.9 Simulation 19: The Ferromagnetic Second Order Phase Transition 102
9.10 Simulation 20: The 2-Point Correlator 103
9.11 Simulation 21: Hysteresis and the First Order Phase Transition 104
Monte Carlo Simulations of Matrix Field Theory 105
10 Metropolis Algorithm for Yang-Mills Matrix Models 107
10.1 Dimensional Reduction 107
10.1.1 Yang-Mills Action 107
10.1.2 Chern-Simons Action: Myers Term 108
10.2 Metropolis Accept/Reject Step 112
10.3 Statistical Errors 113
10.4 Auto-Correlation Time 114
10.5 Code and Sample Calculation 115
References 117
11 Hybrid Monte Carlo Algorithm for Yang-Mills Matrix Models 119
11.1 The Yang-Mills Matrix Action 119
11.2 The Leap Frog Algorithm 120
11.3 Metropolis Algorithm 122
11.4 Gaussian Distribution 123
11.5 Physical Tests 123
11.6 Emergent Geometry: An Exotic Phase Transition 124
References 129
12 Hybrid Monte Carlo Algorithm for Noucommutative Phi-Four 131
12.1 The Matrix Scalar Action 131
12.2 The Leap Frog Algorithm 132
12.3 Hybrid Monte Carlo Algorithm 132
12.4 Optimization 132
12.4.1 Partial Optimization 132
12.4.2 Full Optimization 134
12.5 The Non-Uniform Order: Another Exotic Phase 134
12.5.1 Phase Structure 134
12.5.2 Sample Simulations 135
References 139
13 Lattice HMC Simulations of φ4/2: A Lattice Example 141
13.1 Model and Phase Structure 141
13.2 The HM Algorithm 145
13.3 Renormalization and Continuum Limit 147
13.4 HMC Simulation Calculation of the Critical Line 149
References 151
14 (Multi-Trace) Quartic Matrix Models 153
14.1 The Pure Real Quartic Matrix Model 153
14.2 The Multi-Trace Matrix Model 154
14.3 Model and Algorithm 156
14.4 The Disorder-to-Non-Uniform-Order Transition 158
14.5 Other Suitable Algorithms 160
14.5.1 Over-Relaxation Algorithm 160
14.5.2 Heat-Bath Algorithm 161
References 162
15 The Remez Algorithm and the Conjugate Gradient Method 163
15.1 Minimax Approximations 163
15.1.1 Minimax Polynomial Approximation and Chebyshev Polynomials 163
15.1.2 Minimax Rational Approximation and Remez Algorithm 168
15.1.3 The Code "AlgRemez" 171
15.2 Conjugate Gradient Method 171
15.2.3 Construction 171
15.2.2 The Conjugate Gradient Method as a Krylov Space Solver 175
15.2.3 The Multi-Mass Conjugate Gradient Method 177
References 179
16 Monte Carlo Simulation of Fermion Determinants 181
16.1 The Dirac Operator 181
16.2 Pseudo-Fermious and Rational Approximations 185
16.3 More on The Conjugate-Gradient 187
16.3.1 Multiplication by M' and (M') 187
16.3.2 The Fermionic Force 190
16.4 The Rational Hybrid Monte Carlo Algorithm 192
16.4.1 Statement 192
16.4.2 Preliminary Tests 193
16.5 Other Related Topics 197
References 199
17 U(1) Gauge Theory on the Lattice: Another Lattice Example 201
17.1 Continuum Considerations 201
17.2 Lattice Regularization 203
17.2.1 Lattice Fermions and Gauge Fields 203
17.2.2 Quenched Approximation 205
17.2.3 Wilson Loop, Creutz Ratio and Other Observables 206
17.3 Monte Carlo Simulation of Pure U(1) Gauge Theory 209
17.3.1 The Metropolis Algorithm 209
17.3.2 Some Numerical Results 212
17.3.3 Coulomb and Confinement Phases 215
References 216
18 Codes 217
9.1 Metropolis-ym.f 219
9.2 Hybrid-ym.f 225
9.3 Hybrid-scalar-fuzzy.f 232
9.4 Phi-four-on-lattice.f 242
9.5 Metropolis-scalar-multitrace.f 249
9.6 Romez.f 256
9.7 Conjugate-gradient.f 258
9.8 Hybrid-supersymmetric-ym.f 261
9.9 U-one-on-the-lattice.f 279
Index 291