Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications
Forcenturies,composersandmusicianssuccessfullycomplementedeachother. Composers provided humanity with superb compositions, and musicians have been making attempts to vivify the mysterious staves. Great performances, thosethatmanagedreatetheexpectedorsometimesunexpectedemotions, always captivated the audience and broke fresh ground for new artworks. The present work belongs to the world of “instrumentalists” and ventures upon creating new perspectives within the field of electronic structure of solid materials. We also have our own great “composers”, such as Walter Kohn and Ole Krogh Andersen. Kohn established the Density Functional theory, the most elegant and useful formulation of the many electron problem, and for that he deservedly won the highest award within the scientific world. - dersen created efficient tools to solve the basic Density Functional equations for solids. Today, his theories are widely used in computational materials science. In January 1997, Andersen, looking for experts within the field, c- tacted Hans Lomholt Skriver’s group in Lyngby, and asked then to vivify his latest tool belonging to the third generation mu?n-tin methods. Since then, many new incarnations of these methods have come to light. This monograph revealsanimplementationofoneof theoriginalapproaches,namelytheExact Mu?n-Tin Orbitals (EMTO) method. Today theoretical condensed matter physics, besides its fundamental m- sion to facilitate the understanding of the properties of solid materials at the atomic level, also strives to predict useful quantitative and qualitative data for the development of high-performance materials. Computational quantum mechanics brings an increasing demand for new techniques, which make t- oretical investigations more handleable bytoday’s computers.
1101499127
Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications
Forcenturies,composersandmusicianssuccessfullycomplementedeachother. Composers provided humanity with superb compositions, and musicians have been making attempts to vivify the mysterious staves. Great performances, thosethatmanagedreatetheexpectedorsometimesunexpectedemotions, always captivated the audience and broke fresh ground for new artworks. The present work belongs to the world of “instrumentalists” and ventures upon creating new perspectives within the field of electronic structure of solid materials. We also have our own great “composers”, such as Walter Kohn and Ole Krogh Andersen. Kohn established the Density Functional theory, the most elegant and useful formulation of the many electron problem, and for that he deservedly won the highest award within the scientific world. - dersen created efficient tools to solve the basic Density Functional equations for solids. Today, his theories are widely used in computational materials science. In January 1997, Andersen, looking for experts within the field, c- tacted Hans Lomholt Skriver’s group in Lyngby, and asked then to vivify his latest tool belonging to the third generation mu?n-tin methods. Since then, many new incarnations of these methods have come to light. This monograph revealsanimplementationofoneof theoriginalapproaches,namelytheExact Mu?n-Tin Orbitals (EMTO) method. Today theoretical condensed matter physics, besides its fundamental m- sion to facilitate the understanding of the properties of solid materials at the atomic level, also strives to predict useful quantitative and qualitative data for the development of high-performance materials. Computational quantum mechanics brings an increasing demand for new techniques, which make t- oretical investigations more handleable bytoday’s computers.
179.0 In Stock
Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications

Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications

by Levente Vitos
Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications

Computational Quantum Mechanics for Materials Engineers: The EMTO Method and Applications

by Levente Vitos

Paperback(Softcover reprint of hardcover 1st ed. 2007)

$179.00 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Forcenturies,composersandmusicianssuccessfullycomplementedeachother. Composers provided humanity with superb compositions, and musicians have been making attempts to vivify the mysterious staves. Great performances, thosethatmanagedreatetheexpectedorsometimesunexpectedemotions, always captivated the audience and broke fresh ground for new artworks. The present work belongs to the world of “instrumentalists” and ventures upon creating new perspectives within the field of electronic structure of solid materials. We also have our own great “composers”, such as Walter Kohn and Ole Krogh Andersen. Kohn established the Density Functional theory, the most elegant and useful formulation of the many electron problem, and for that he deservedly won the highest award within the scientific world. - dersen created efficient tools to solve the basic Density Functional equations for solids. Today, his theories are widely used in computational materials science. In January 1997, Andersen, looking for experts within the field, c- tacted Hans Lomholt Skriver’s group in Lyngby, and asked then to vivify his latest tool belonging to the third generation mu?n-tin methods. Since then, many new incarnations of these methods have come to light. This monograph revealsanimplementationofoneof theoriginalapproaches,namelytheExact Mu?n-Tin Orbitals (EMTO) method. Today theoretical condensed matter physics, besides its fundamental m- sion to facilitate the understanding of the properties of solid materials at the atomic level, also strives to predict useful quantitative and qualitative data for the development of high-performance materials. Computational quantum mechanics brings an increasing demand for new techniques, which make t- oretical investigations more handleable bytoday’s computers.

Product Details

ISBN-13: 9781849966856
Publisher: Springer London
Publication date: 12/09/2010
Series: Engineering Materials and Processes
Edition description: Softcover reprint of hardcover 1st ed. 2007
Pages: 237
Product dimensions: 6.10(w) x 9.25(h) x 0.02(d)

About the Author

Dr Levente Vitos is a research fellow at the Research Institute for Solid State Physics and Optics (SZFKI), Budapest, a guest professor at KTH, Sweden, and a researcher at Uppsala University, Sweden. Dr Vitos is considered a world expert on the application of the LMTO quantum mechanical method and its application in materials systems, and the he is the creator of the new EMTO-CPA method. These methods represent the first useful applications of modern applied quantum mechanics that can be used practically in the industrial world of metallurgy and alloy design to model and create novel materials.

Table of Contents

The Method.- Basics of Electronic Structure Calculations.- Exact Muffin-tin Orbitals Method.- Slope Matrix.- Full Charge Density Technique.- The EMTO-CPA Method.- Applications.- Ground-state Properties.- Ordered Solids.- Binary Alloys.- Iron—chromium—nickel Alloys.
From the B&N Reads Blog

Customer Reviews