Confidence, Likelihood, Probability: Statistical Inference with Confidence Distributions
This lively book lays out a methodology of confidence distributions and puts them through their paces. Among other merits they lead to optimal combinations of confidence from different sources of information, and they can make complex models amenable to objective and indeed prior-free analysis for less subjectively inclined statisticians. The generous mixture of theory, illustrations, applications and exercises is suitable for statisticians at all levels of experience, as well as for data-oriented scientists. Some confidence distributions are less dispersed than their competitors. This concept leads to a theory of risk functions and comparisons for distributions of confidence. Neyman-Pearson type theorems leading to optimal confidence are developed and richly illustrated. Exact and optimal confidence distribution is the gold standard for inferred epistemic distributions. Confidence distributions and likelihood functions are intertwined, allowing prior distributions to be made part of the likelihood. Meta-analysis in likelihood terms is developed and taken beyond traditional methods, suiting it in particular to combining information across diverse data sources.
1122637116
Confidence, Likelihood, Probability: Statistical Inference with Confidence Distributions
This lively book lays out a methodology of confidence distributions and puts them through their paces. Among other merits they lead to optimal combinations of confidence from different sources of information, and they can make complex models amenable to objective and indeed prior-free analysis for less subjectively inclined statisticians. The generous mixture of theory, illustrations, applications and exercises is suitable for statisticians at all levels of experience, as well as for data-oriented scientists. Some confidence distributions are less dispersed than their competitors. This concept leads to a theory of risk functions and comparisons for distributions of confidence. Neyman-Pearson type theorems leading to optimal confidence are developed and richly illustrated. Exact and optimal confidence distribution is the gold standard for inferred epistemic distributions. Confidence distributions and likelihood functions are intertwined, allowing prior distributions to be made part of the likelihood. Meta-analysis in likelihood terms is developed and taken beyond traditional methods, suiting it in particular to combining information across diverse data sources.
105.0 In Stock
Confidence, Likelihood, Probability: Statistical Inference with Confidence Distributions

Confidence, Likelihood, Probability: Statistical Inference with Confidence Distributions

Confidence, Likelihood, Probability: Statistical Inference with Confidence Distributions

Confidence, Likelihood, Probability: Statistical Inference with Confidence Distributions

Hardcover

$105.00 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This lively book lays out a methodology of confidence distributions and puts them through their paces. Among other merits they lead to optimal combinations of confidence from different sources of information, and they can make complex models amenable to objective and indeed prior-free analysis for less subjectively inclined statisticians. The generous mixture of theory, illustrations, applications and exercises is suitable for statisticians at all levels of experience, as well as for data-oriented scientists. Some confidence distributions are less dispersed than their competitors. This concept leads to a theory of risk functions and comparisons for distributions of confidence. Neyman-Pearson type theorems leading to optimal confidence are developed and richly illustrated. Exact and optimal confidence distribution is the gold standard for inferred epistemic distributions. Confidence distributions and likelihood functions are intertwined, allowing prior distributions to be made part of the likelihood. Meta-analysis in likelihood terms is developed and taken beyond traditional methods, suiting it in particular to combining information across diverse data sources.

Product Details

ISBN-13: 9780521861601
Publisher: Cambridge University Press
Publication date: 02/24/2016
Series: Cambridge Series in Statistical and Probabilistic Mathematics , #41
Pages: 511
Product dimensions: 7.24(w) x 10.24(h) x 1.22(d)

About the Author

Tore Schweder is a Professor of Statistics in the Department of Economics and at the Centre for Ecology and Evolutionary Synthesis at the University of Oslo.

Nils Lid Hjort is Professor of Mathematical Statistics in the Department of Mathematics at the University of Oslo.

Table of Contents

1. Confidence, likelihood, probability: an invitation; 2. Interference in parametric models; 3. Confidence distributions; 4. Further developments for confidence distribution; 5. Invariance, sufficiency and optimality for confidence distributions; 6. The fiducial argument; 7. Improved approximations for confidence distributions; 8. Exponential families and generalised linear models; 9. Confidence distributions in higher dimensions; 10. Likelihoods and confidence likelihoods; 11. Confidence in non- and semiparametric models; 12. Predictions and confidence; 13. Meta-analysis and combination of information; 14. Applications; 15. Finale: summary, and a look into the future.
From the B&N Reads Blog

Customer Reviews