Continuous Optimization For Data Science
The text is divided into three main parts: unconstrained optimization, constrained optimization, and linear programming. The first part addresses unconstrained optimization in single-variable and multivariable functions, introducing key algorithms such as steepest descent, Newton, and quasi-Newton methods.The second part focuses on constrained optimization, starting with linear equality constraints and extending to more general cases, including inequality constraints. It details optimality conditions, sensitivity analysis, and relevant algorithms for solving these problems.The third part covers linear programming, presenting the formulation of LP problems, the simplex algorithm, and sensitivity analysis. Throughout, the text provides numerous applications to data science, such as linear regression, maximum likelihood estimation, expectation-maximization algorithms, support vector machines, and linear neural networks.
1146269619
Continuous Optimization For Data Science
The text is divided into three main parts: unconstrained optimization, constrained optimization, and linear programming. The first part addresses unconstrained optimization in single-variable and multivariable functions, introducing key algorithms such as steepest descent, Newton, and quasi-Newton methods.The second part focuses on constrained optimization, starting with linear equality constraints and extending to more general cases, including inequality constraints. It details optimality conditions, sensitivity analysis, and relevant algorithms for solving these problems.The third part covers linear programming, presenting the formulation of LP problems, the simplex algorithm, and sensitivity analysis. Throughout, the text provides numerous applications to data science, such as linear regression, maximum likelihood estimation, expectation-maximization algorithms, support vector machines, and linear neural networks.
58.0 Pre Order
Continuous Optimization For Data Science

Continuous Optimization For Data Science

by Moshe Haviv
Continuous Optimization For Data Science

Continuous Optimization For Data Science

by Moshe Haviv

Paperback

$58.00 
  • SHIP THIS ITEM
    Available for Pre-Order. This item will be released on July 27, 2025

Related collections and offers


Overview

The text is divided into three main parts: unconstrained optimization, constrained optimization, and linear programming. The first part addresses unconstrained optimization in single-variable and multivariable functions, introducing key algorithms such as steepest descent, Newton, and quasi-Newton methods.The second part focuses on constrained optimization, starting with linear equality constraints and extending to more general cases, including inequality constraints. It details optimality conditions, sensitivity analysis, and relevant algorithms for solving these problems.The third part covers linear programming, presenting the formulation of LP problems, the simplex algorithm, and sensitivity analysis. Throughout, the text provides numerous applications to data science, such as linear regression, maximum likelihood estimation, expectation-maximization algorithms, support vector machines, and linear neural networks.

Product Details

ISBN-13: 9789819801503
Publisher: World Scientific Publishing Company, Incorporated
Publication date: 07/27/2025
Pages: 320
Product dimensions: 6.00(w) x 1.25(h) x 9.00(d)
From the B&N Reads Blog

Customer Reviews