Control of Flexible-link Manipulators Using Neural Networks
Control of Flexible-link Manipulators Using Neural Networks addresses the difficulties that arise in controlling the end-point of a manipulator that has a significant amount of structural flexibility in its links. The non-minimum phase characteristic, coupling effects, nonlinearities, parameter variations and unmodeled dynamics in such a manipulator all contribute to these difficulties. Control strategies that ignore these uncertainties and nonlinearities generally fail to provide satisfactory closed-loop performance. This monograph develops and experimentally evaluates several intelligent (neural network based) control techniques to address the problem of controlling the end-point of flexible-link manipulators in the presence of all the aforementioned difficulties. To highlight the main issues, a very flexible-link manipulator whose hub exhibits a considerable amount of friction is considered for the experimental work. Four different neural network schemes are proposed and implemented on the experimental test-bed. The neural networks are trained and employed as online controllers.
1101496599
Control of Flexible-link Manipulators Using Neural Networks
Control of Flexible-link Manipulators Using Neural Networks addresses the difficulties that arise in controlling the end-point of a manipulator that has a significant amount of structural flexibility in its links. The non-minimum phase characteristic, coupling effects, nonlinearities, parameter variations and unmodeled dynamics in such a manipulator all contribute to these difficulties. Control strategies that ignore these uncertainties and nonlinearities generally fail to provide satisfactory closed-loop performance. This monograph develops and experimentally evaluates several intelligent (neural network based) control techniques to address the problem of controlling the end-point of flexible-link manipulators in the presence of all the aforementioned difficulties. To highlight the main issues, a very flexible-link manipulator whose hub exhibits a considerable amount of friction is considered for the experimental work. Four different neural network schemes are proposed and implemented on the experimental test-bed. The neural networks are trained and employed as online controllers.
54.99 In Stock
Control of Flexible-link Manipulators Using Neural Networks

Control of Flexible-link Manipulators Using Neural Networks

Control of Flexible-link Manipulators Using Neural Networks

Control of Flexible-link Manipulators Using Neural Networks

Paperback(2001)

$54.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Control of Flexible-link Manipulators Using Neural Networks addresses the difficulties that arise in controlling the end-point of a manipulator that has a significant amount of structural flexibility in its links. The non-minimum phase characteristic, coupling effects, nonlinearities, parameter variations and unmodeled dynamics in such a manipulator all contribute to these difficulties. Control strategies that ignore these uncertainties and nonlinearities generally fail to provide satisfactory closed-loop performance. This monograph develops and experimentally evaluates several intelligent (neural network based) control techniques to address the problem of controlling the end-point of flexible-link manipulators in the presence of all the aforementioned difficulties. To highlight the main issues, a very flexible-link manipulator whose hub exhibits a considerable amount of friction is considered for the experimental work. Four different neural network schemes are proposed and implemented on the experimental test-bed. The neural networks are trained and employed as online controllers.

Product Details

ISBN-13: 9781852334093
Publisher: Springer London
Publication date: 02/23/2001
Series: Lecture Notes in Control and Information Sciences , #261
Edition description: 2001
Pages: 150
Product dimensions: 6.10(w) x 9.25(h) x 0.36(d)

Table of Contents

Manipulator model.- Output redefinition.- Proposed neural network structures.- Experimental results.
From the B&N Reads Blog

Customer Reviews