Convex Functions, Monotone Operators and Differentiability
In the three and a half years since the first edition to these notes was written there has been progress on a number of relevant topics. D. Preiss answered in the affirmative the decades old question of whether a Banach space with an equivalent Gateaux differentiable norm is a weak Asplund space, while R. Haydon constructed some very ingenious examples which show, among other things, that the converse to Preiss' theorem is false. S. Simons produced a startlingly simple proof of Rockafellar's maximal monotonicity theorem for subdifferentials of convex functions. G. Godefroy, R. Deville and V. Zizler proved an exciting new version ofthe Borwein-Preiss smooth variational prin- ciple. Other new contributions to the area have come from J. Borwein, S. Fitzpatrick, P. Kenderov, 1. Namioka, N. Ribarska, A. and M. E. Verona and the author. Some ofthe new material and substantial portions ofthe first edition were used in a one-quarter graduate course at the University of Washington in 1991 (leading to a number of corrections and improvements) and some of the new theorems were presented in the Rainwater Seminar. An obvious improvement is due to the fact that I learned to use '!EX. The task of converting the original MacWrite text to '!EXwas performed by Ms. Mary Sheetz, to whom I am extremely grateful.
1004480592
Convex Functions, Monotone Operators and Differentiability
In the three and a half years since the first edition to these notes was written there has been progress on a number of relevant topics. D. Preiss answered in the affirmative the decades old question of whether a Banach space with an equivalent Gateaux differentiable norm is a weak Asplund space, while R. Haydon constructed some very ingenious examples which show, among other things, that the converse to Preiss' theorem is false. S. Simons produced a startlingly simple proof of Rockafellar's maximal monotonicity theorem for subdifferentials of convex functions. G. Godefroy, R. Deville and V. Zizler proved an exciting new version ofthe Borwein-Preiss smooth variational prin- ciple. Other new contributions to the area have come from J. Borwein, S. Fitzpatrick, P. Kenderov, 1. Namioka, N. Ribarska, A. and M. E. Verona and the author. Some ofthe new material and substantial portions ofthe first edition were used in a one-quarter graduate course at the University of Washington in 1991 (leading to a number of corrections and improvements) and some of the new theorems were presented in the Rainwater Seminar. An obvious improvement is due to the fact that I learned to use '!EX. The task of converting the original MacWrite text to '!EXwas performed by Ms. Mary Sheetz, to whom I am extremely grateful.
32.99 In Stock
Convex Functions, Monotone Operators and Differentiability

Convex Functions, Monotone Operators and Differentiability

by Robert R. Phelps
Convex Functions, Monotone Operators and Differentiability

Convex Functions, Monotone Operators and Differentiability

by Robert R. Phelps

Paperback(2nd ed. 1993)

$32.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

In the three and a half years since the first edition to these notes was written there has been progress on a number of relevant topics. D. Preiss answered in the affirmative the decades old question of whether a Banach space with an equivalent Gateaux differentiable norm is a weak Asplund space, while R. Haydon constructed some very ingenious examples which show, among other things, that the converse to Preiss' theorem is false. S. Simons produced a startlingly simple proof of Rockafellar's maximal monotonicity theorem for subdifferentials of convex functions. G. Godefroy, R. Deville and V. Zizler proved an exciting new version ofthe Borwein-Preiss smooth variational prin- ciple. Other new contributions to the area have come from J. Borwein, S. Fitzpatrick, P. Kenderov, 1. Namioka, N. Ribarska, A. and M. E. Verona and the author. Some ofthe new material and substantial portions ofthe first edition were used in a one-quarter graduate course at the University of Washington in 1991 (leading to a number of corrections and improvements) and some of the new theorems were presented in the Rainwater Seminar. An obvious improvement is due to the fact that I learned to use '!EX. The task of converting the original MacWrite text to '!EXwas performed by Ms. Mary Sheetz, to whom I am extremely grateful.

Product Details

ISBN-13: 9783540567158
Publisher: Springer Berlin Heidelberg
Publication date: 09/10/1993
Series: Lecture Notes in Mathematics , #1364
Edition description: 2nd ed. 1993
Pages: 120
Product dimensions: 6.69(w) x 9.53(h) x 0.01(d)

Table of Contents

Convex functions on real Banach spaces.- Monotone operators, subdifferentials and Asplund spaces.- Lower semicontinuous convex functions.- Smooth variational principles, Asplund spaces, weak Asplund spaces.- Asplund spaces, the RNP and perturbed optimization.- Gâteaux differentiability spaces.- A generalization of monotone operators: Usco maps.
From the B&N Reads Blog

Customer Reviews