Deep Learning from the Basics: Python and Deep Learning: Theory and Implementation

Deep learning is rapidly becoming the most preferred way of solving data problems. This is thanks, in part, to its huge variety of mathematical algorithms and their ability to find patterns that are otherwise invisible to us.

Deep Learning from the Basics begins with a fast-paced introduction to deep learning with Python, its definition, characteristics, and applications. You'll learn how to use the Python interpreter and the script files in your applications, and utilize NumPy and Matplotlib in your deep learning models. As you progress through the book, you'll discover backpropagation-an efficient way to calculate the gradients of weight parameters-and study multilayer perceptrons and their limitations, before, finally, implementing a three-layer neural network and calculating multidimensional arrays.

By the end of the book, you'll have the knowledge to apply the relevant technologies in deep learning.

1138987594
Deep Learning from the Basics: Python and Deep Learning: Theory and Implementation

Deep learning is rapidly becoming the most preferred way of solving data problems. This is thanks, in part, to its huge variety of mathematical algorithms and their ability to find patterns that are otherwise invisible to us.

Deep Learning from the Basics begins with a fast-paced introduction to deep learning with Python, its definition, characteristics, and applications. You'll learn how to use the Python interpreter and the script files in your applications, and utilize NumPy and Matplotlib in your deep learning models. As you progress through the book, you'll discover backpropagation-an efficient way to calculate the gradients of weight parameters-and study multilayer perceptrons and their limitations, before, finally, implementing a three-layer neural network and calculating multidimensional arrays.

By the end of the book, you'll have the knowledge to apply the relevant technologies in deep learning.

39.99 In Stock
Deep Learning from the Basics: Python and Deep Learning: Theory and Implementation

Deep Learning from the Basics: Python and Deep Learning: Theory and Implementation

by Koki Saitoh
Deep Learning from the Basics: Python and Deep Learning: Theory and Implementation

Deep Learning from the Basics: Python and Deep Learning: Theory and Implementation

by Koki Saitoh

Paperback

$39.99 
  • SHIP THIS ITEM
    In stock. Ships in 2-4 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Deep learning is rapidly becoming the most preferred way of solving data problems. This is thanks, in part, to its huge variety of mathematical algorithms and their ability to find patterns that are otherwise invisible to us.

Deep Learning from the Basics begins with a fast-paced introduction to deep learning with Python, its definition, characteristics, and applications. You'll learn how to use the Python interpreter and the script files in your applications, and utilize NumPy and Matplotlib in your deep learning models. As you progress through the book, you'll discover backpropagation-an efficient way to calculate the gradients of weight parameters-and study multilayer perceptrons and their limitations, before, finally, implementing a three-layer neural network and calculating multidimensional arrays.

By the end of the book, you'll have the knowledge to apply the relevant technologies in deep learning.


Product Details

ISBN-13: 9781800206137
Publisher: Packt Publishing
Publication date: 03/04/2021
Pages: 316
Product dimensions: 7.50(w) x 9.25(h) x 0.66(d)
From the B&N Reads Blog

Customer Reviews