Supported by query languages, databases, algorithms, platforms, analytics methods and machine and deep learning (ML and DL) algorithms, graphs are now emerging as a new data structure for optimally representing a variety of data and their intimate relationships.
Compared to traditional analytics methods, the connectedness of data points in graph analytics facilitates the identification of clusters of related data points based on levels of influence, association, interaction frequency and probability. Graph analytics is being empowered through a host of path-breaking analytics techniques to explore and pinpoint beneficial relationships between different entities such as organizations, people and transactions. This edited book aims to explain the various aspects and importance of graph data science. The authors from both academia and industry cover algorithms, analytics methods, platforms and databases that are intrinsically capable of creating business value by intelligently leveraging connected data.
This book will be a valuable reference for ICTs industry and academic researchers, scientists and engineers, and lecturers and advanced students in the fields of data analytics, data science, cloud/fog/edge architecture, internet of things, artificial intelligence/machine and deep learning, and related fields of applications. It will also be of interest to analytics professionals in industry and IT operations teams.
Supported by query languages, databases, algorithms, platforms, analytics methods and machine and deep learning (ML and DL) algorithms, graphs are now emerging as a new data structure for optimally representing a variety of data and their intimate relationships.
Compared to traditional analytics methods, the connectedness of data points in graph analytics facilitates the identification of clusters of related data points based on levels of influence, association, interaction frequency and probability. Graph analytics is being empowered through a host of path-breaking analytics techniques to explore and pinpoint beneficial relationships between different entities such as organizations, people and transactions. This edited book aims to explain the various aspects and importance of graph data science. The authors from both academia and industry cover algorithms, analytics methods, platforms and databases that are intrinsically capable of creating business value by intelligently leveraging connected data.
This book will be a valuable reference for ICTs industry and academic researchers, scientists and engineers, and lecturers and advanced students in the fields of data analytics, data science, cloud/fog/edge architecture, internet of things, artificial intelligence/machine and deep learning, and related fields of applications. It will also be of interest to analytics professionals in industry and IT operations teams.

Demystifying Graph Data Science: Graph algorithms, analytics methods, platforms, databases, and use cases
415
Demystifying Graph Data Science: Graph algorithms, analytics methods, platforms, databases, and use cases
415Hardcover
Product Details
ISBN-13: | 9781839534881 |
---|---|
Publisher: | The Institution of Engineering and Technology |
Publication date: | 11/28/2022 |
Series: | Computing and Networks |
Pages: | 415 |
Product dimensions: | 6.14(w) x 9.21(h) x (d) |