The book introduces innovative frameworks such as sampling-and-classification (SAC) and sampling-and-learning (SAL), which underpin cutting-edge algorithms like Racos and SRacos. These methods are designed to excel in challenging optimization scenarios, including high-dimensional search spaces, noisy environments, and parallel computing. A dedicated section on the ZOOpt toolbox provides practical tools for implementing these algorithms effectively. The book’s structure moves from foundational principles and algorithmic development to advanced topics and real-world applications, such as hyperparameter tuning, neural architecture search, and algorithm selection in AutoML.
Readers will benefit from a comprehensive yet concise presentation of modern DFO methods, gaining theoretical insights and practical tools to enhance their research and problem-solving capabilities. A foundational understanding of machine learning, probability theory, and algorithms is recommended for readers to fully engage with the material.
The book introduces innovative frameworks such as sampling-and-classification (SAC) and sampling-and-learning (SAL), which underpin cutting-edge algorithms like Racos and SRacos. These methods are designed to excel in challenging optimization scenarios, including high-dimensional search spaces, noisy environments, and parallel computing. A dedicated section on the ZOOpt toolbox provides practical tools for implementing these algorithms effectively. The book’s structure moves from foundational principles and algorithmic development to advanced topics and real-world applications, such as hyperparameter tuning, neural architecture search, and algorithm selection in AutoML.
Readers will benefit from a comprehensive yet concise presentation of modern DFO methods, gaining theoretical insights and practical tools to enhance their research and problem-solving capabilities. A foundational understanding of machine learning, probability theory, and algorithms is recommended for readers to fully engage with the material.
Derivative-Free Optimization: Theoretical Foundations, Algorithms, and Applications
193
Derivative-Free Optimization: Theoretical Foundations, Algorithms, and Applications
193Product Details
| ISBN-13: | 9789819659289 |
|---|---|
| Publisher: | Springer Nature Singapore |
| Publication date: | 07/03/2025 |
| Series: | Machine Learning: Foundations, Methodologies, and Applications |
| Pages: | 193 |
| Product dimensions: | 6.10(w) x 9.25(h) x (d) |