Differentialgeometrie und Minimalflächen
Das vorliegende Lehrbuch bietet eine moderne Einführung in die Differenzialgeometrie - etwa im Umfang einer einsemestrigen Vorlesung. Zunächst behandelt es die Geometrie von Flächen im Raum. Viele Beispiele schulen Leser in geometrischer Anschauung, deren wichtigste Klasse die Minimalflächen bilden. Zu ihrem Studium entwickeln die Autoren analytische Methoden und lösen in diesem Zusammenhang das Plateausche Problem. Es besteht darin, eine Minimalfläche mit vorgegebener Berandung zu finden. Als Beispiel einer globalen Aussage der Differenzialgeometrie beweisen sie den Bernsteinschen Satz. Weitere Kapitel behandeln die innere Geometrie von Flächen einschließlich des Satzes von Gauss-Bonnet, und stellen die hyperbolische Geometrie ausführlich dar. Die Autoren verknüpfen geometrische Konstruktionen und analytische Methoden und folgen damit einem zentralen Trend der modernen mathematischen Forschung. Verschiedene geistesgeschichtliche Bemerkungen runden den Text ab. Die Neuauflage wurde überarbeitet und aktualisiert.

Hinweise und Errata auf Webseite des Autors: https://myweb.rz.uni-augsburg.de/~eschenbu/
1117357000
Differentialgeometrie und Minimalflächen
Das vorliegende Lehrbuch bietet eine moderne Einführung in die Differenzialgeometrie - etwa im Umfang einer einsemestrigen Vorlesung. Zunächst behandelt es die Geometrie von Flächen im Raum. Viele Beispiele schulen Leser in geometrischer Anschauung, deren wichtigste Klasse die Minimalflächen bilden. Zu ihrem Studium entwickeln die Autoren analytische Methoden und lösen in diesem Zusammenhang das Plateausche Problem. Es besteht darin, eine Minimalfläche mit vorgegebener Berandung zu finden. Als Beispiel einer globalen Aussage der Differenzialgeometrie beweisen sie den Bernsteinschen Satz. Weitere Kapitel behandeln die innere Geometrie von Flächen einschließlich des Satzes von Gauss-Bonnet, und stellen die hyperbolische Geometrie ausführlich dar. Die Autoren verknüpfen geometrische Konstruktionen und analytische Methoden und folgen damit einem zentralen Trend der modernen mathematischen Forschung. Verschiedene geistesgeschichtliche Bemerkungen runden den Text ab. Die Neuauflage wurde überarbeitet und aktualisiert.

Hinweise und Errata auf Webseite des Autors: https://myweb.rz.uni-augsburg.de/~eschenbu/
59.99 Out Of Stock
Differentialgeometrie und Minimalflächen

Differentialgeometrie und Minimalflächen

by Jost-Hinrich Eschenburg, Jürgen Jost
Differentialgeometrie und Minimalflächen

Differentialgeometrie und Minimalflächen

by Jost-Hinrich Eschenburg, Jürgen Jost

Paperback(3., aktualisierte Aufl. 2014)

$59.99 
  • SHIP THIS ITEM
    Temporarily Out of Stock Online
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Das vorliegende Lehrbuch bietet eine moderne Einführung in die Differenzialgeometrie - etwa im Umfang einer einsemestrigen Vorlesung. Zunächst behandelt es die Geometrie von Flächen im Raum. Viele Beispiele schulen Leser in geometrischer Anschauung, deren wichtigste Klasse die Minimalflächen bilden. Zu ihrem Studium entwickeln die Autoren analytische Methoden und lösen in diesem Zusammenhang das Plateausche Problem. Es besteht darin, eine Minimalfläche mit vorgegebener Berandung zu finden. Als Beispiel einer globalen Aussage der Differenzialgeometrie beweisen sie den Bernsteinschen Satz. Weitere Kapitel behandeln die innere Geometrie von Flächen einschließlich des Satzes von Gauss-Bonnet, und stellen die hyperbolische Geometrie ausführlich dar. Die Autoren verknüpfen geometrische Konstruktionen und analytische Methoden und folgen damit einem zentralen Trend der modernen mathematischen Forschung. Verschiedene geistesgeschichtliche Bemerkungen runden den Text ab. Die Neuauflage wurde überarbeitet und aktualisiert.

Hinweise und Errata auf Webseite des Autors: https://myweb.rz.uni-augsburg.de/~eschenbu/

Product Details

ISBN-13: 9783642385216
Publisher: Springer Berlin Heidelberg
Publication date: 10/07/2013
Series: Masterclass
Edition description: 3., aktualisierte Aufl. 2014
Pages: 258
Product dimensions: 6.61(w) x 9.45(h) x 0.02(d)
Language: German

About the Author

Prof. Dr. Jürgen Jost, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig
Prof. Dr. Jost-Hinrich Eschenburg, Universität Augsburg

Table of Contents

Der begriffliche Rahmen.- Kurven.- Die erste Fundamentalform.- Die zweite Fundamentalform.- Geodäten und Kürzeste.- Die tangentiale Ableitung.- Nabelpunkte und konforme Abbildungen.- Minimalflächen.- Das Plateau-Problem.- Minimalflächen und Maximumprinzip.- Innere und äußere Geometrie.- Krümmung und Gestalt.- Integration.- Gewöhnliche Differentialgleichungen.

From the B&N Reads Blog

Customer Reviews