Distributed Computing with Python

Harness the power of multiple computers using Python through this fastpaced informative guide

About This Book
  • You'll learn to write data processing programs in Python that are highly available, reliable, and fault tolerant
  • Make use of Amazon Web Services along with Python to establish a powerful remote computation system
  • Train Python to handle dataintensive and resource hungry applications
Who This Book Is For

This book is for Python developers who have developed Python programs for data processing and now want to learn how to write fast, efficient programs that perform CPUintensive data processing tasks.

What You Will Learn
  • Get an introduction to parallel and distributed computing
  • See synchronous and asynchronous programming
  • Explore parallelism in Python
  • Distributed application with Celery
  • Python in the Cloud
  • Python on an HPC cluster
  • Test and debug distributed applications
In Detail

CPUintensive data processing tasks have become crucial considering the complexity of the various big data applications that are used today. Reducing the CPU utilization per process is very important to improve the overall speed of applications.

This book will teach you how to perform parallel execution of computations by distributing them across multiple processors in a single machine, thus improving the overall performance of a big data processing task. We will cover synchronous and asynchronous models, shared memory and file systems, communication between various processes, synchronization, and more.

Style and Approach

This example based, stepbystep guide will show you how to make the best of your hardware configuration using Python for distributing applications.

1123320557
Distributed Computing with Python

Harness the power of multiple computers using Python through this fastpaced informative guide

About This Book
  • You'll learn to write data processing programs in Python that are highly available, reliable, and fault tolerant
  • Make use of Amazon Web Services along with Python to establish a powerful remote computation system
  • Train Python to handle dataintensive and resource hungry applications
Who This Book Is For

This book is for Python developers who have developed Python programs for data processing and now want to learn how to write fast, efficient programs that perform CPUintensive data processing tasks.

What You Will Learn
  • Get an introduction to parallel and distributed computing
  • See synchronous and asynchronous programming
  • Explore parallelism in Python
  • Distributed application with Celery
  • Python in the Cloud
  • Python on an HPC cluster
  • Test and debug distributed applications
In Detail

CPUintensive data processing tasks have become crucial considering the complexity of the various big data applications that are used today. Reducing the CPU utilization per process is very important to improve the overall speed of applications.

This book will teach you how to perform parallel execution of computations by distributing them across multiple processors in a single machine, thus improving the overall performance of a big data processing task. We will cover synchronous and asynchronous models, shared memory and file systems, communication between various processes, synchronization, and more.

Style and Approach

This example based, stepbystep guide will show you how to make the best of your hardware configuration using Python for distributing applications.

38.99 In Stock
Distributed Computing with Python

Distributed Computing with Python

by Francesco Pierfederici
Distributed Computing with Python

Distributed Computing with Python

by Francesco Pierfederici

Paperback

$38.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Unavailable at Glendora.

Related collections and offers


Overview

Harness the power of multiple computers using Python through this fastpaced informative guide

About This Book
  • You'll learn to write data processing programs in Python that are highly available, reliable, and fault tolerant
  • Make use of Amazon Web Services along with Python to establish a powerful remote computation system
  • Train Python to handle dataintensive and resource hungry applications
Who This Book Is For

This book is for Python developers who have developed Python programs for data processing and now want to learn how to write fast, efficient programs that perform CPUintensive data processing tasks.

What You Will Learn
  • Get an introduction to parallel and distributed computing
  • See synchronous and asynchronous programming
  • Explore parallelism in Python
  • Distributed application with Celery
  • Python in the Cloud
  • Python on an HPC cluster
  • Test and debug distributed applications
In Detail

CPUintensive data processing tasks have become crucial considering the complexity of the various big data applications that are used today. Reducing the CPU utilization per process is very important to improve the overall speed of applications.

This book will teach you how to perform parallel execution of computations by distributing them across multiple processors in a single machine, thus improving the overall performance of a big data processing task. We will cover synchronous and asynchronous models, shared memory and file systems, communication between various processes, synchronization, and more.

Style and Approach

This example based, stepbystep guide will show you how to make the best of your hardware configuration using Python for distributing applications.


Product Details

ISBN-13: 9781785889691
Publisher: Packt Publishing
Publication date: 04/11/2016
Pages: 170
Product dimensions: 7.50(w) x 9.25(h) x 0.36(d)
From the B&N Reads Blog

Customer Reviews