Electromagnetic Anisotropy And Bianisotropy: A Field Guide

Electromagnetic Anisotropy And Bianisotropy: A Field Guide

ISBN-10:
9814289612
ISBN-13:
9789814289610
Pub. Date:
11/24/2009
Publisher:
World Scientific Publishing Company, Incorporated
ISBN-10:
9814289612
ISBN-13:
9789814289610
Pub. Date:
11/24/2009
Publisher:
World Scientific Publishing Company, Incorporated
Electromagnetic Anisotropy And Bianisotropy: A Field Guide

Electromagnetic Anisotropy And Bianisotropy: A Field Guide

$100.0
Current price is , Original price is $100.0. You
$100.00 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Overview

The topics of anisotropy and bianisotropy are fundamental to electromagnetics from both theoretical and experimental perspectives. These properties underpin a host of complex and exotic electromagnetic phenomenons in naturally occurring materials and in relativistic scenarios, as well as in artificially produced metamaterials. As a unique guide to this rapidly developing field, the book provides a unified presentation of key classic and recent results on the studies of constitutive relations, spacetime symmetries, planewave propagation, dyadic Green functions, and homogenization of composite materials. This book also offers an up-to-date extension to standard treatments of crystal optics with coverage on both linear and weakly nonlinear regimes.

Product Details

ISBN-13: 9789814289610
Publisher: World Scientific Publishing Company, Incorporated
Publication date: 11/24/2009
Pages: 236
Product dimensions: 6.20(w) x 9.00(h) x 0.90(d)

Table of Contents

Prologue vi

Dedication vii

Preface ix

Acknowledgments xi

Acronyms and Principal Symbols xvii

1 The Maxwell Postulates and Constitutive Relations 1

1.1 From microscopic to macroscopic 1

1.2 Boundary conditions 4

1.3 Constitutive relations 7

1.4 The frequency domain 8

1.5 6-vector/6×6 dyadic notation 12

1.6 Form invariances 13

1.6.1 Time reversal 13

1.6.2 Spatial inversion 14

1.6.3 Lorentz covariance 15

1.6.4 Chiral invariance 16

1.6.5 Conjugate invariance 18

1.6.6 Energy and momentum 19

1.7 Constitutive dyadics 20

1.7.1 Constraints 20

1.7.2 Specializations 24

2 Linear Mediums 31

2.1 Isotropy 31

2.1.1 Free space 31

2.1.2 Dielectric-magnetic mediums 32

2.1.3 Isotropic chirality 33

2.2 Anisotropy 33

2.2.1 Uniaxial anisotropy 34

2.2.2 Biaxial anisotropy 35

2.2.3 Gyrotropy 38

2.3 Bianisotropy 41

2.3.1 Mediums moving at constant velocity 41

2.3.2 Uniaxial and biaxial bianisotropy 42

2.3.3 Mediums with simultaneous mirror-conjugated and racemic chirality characteristics 43

2.3.4 Faraday chiral mediums 44

2.3.5 Pseudochiral omega mediums 45

2.4 Nonhomogeneous mediums 46

2.4.1 Periodic nonhomogeneity 46

2.4.2 Gravitationally induced bianisotropy 48

3 Spacetime Symmetries and Constitutive Dyadics 55

3.1 Point groups of classical crystallography 55

3.2 Magnetic point groups 57

3.3 Continuous point groups 65

3.4 Space groups 78

4 Planewave Propagation 81

4.1 Uniform and nonuniform plane waves 82

4.2 Eigenanalysis 84

4.3 Reflection and refraction of plane waves 86

4.4 Uniform plane waves in isotropic mediums 88

4.4.1 Dielectric-magnetic mediums 89

4.4.2 Isotropic chiral mediums 89

4.5 Uniform plane waves in anisotropic mediums 90

4.5.1 Uniaxial mediums 90

4.5.2 Biaxial mediums 92

4.5.3 Gyrotropic mediums 94

4.6 Uniform plane waves in bianisotropic mediums 95

4.6.1 Mediums moving at constant velocity 96

4.6.2 Mediums with simultaneous mirror-conjugated and racemic chirality characteristics 97

4.6.3 Faraday chiral mediums 98

4.6.4 Beltrami fields in a bianisotropic medium 100

4.7 Plane waves in nonhomogeneous mediums 102

4.7.1 Periodic nonhomogeneity 102

4.7.2 Gravitationally affected vacuum 104

4.8 Exotic planewave phenomenons 106

4.8.1 Plane waves with negative phase velocity 107

4.8.2 Hyperbolic dispersion relations 109

4.8.3 Voigt waves 111

4.8.4 Negative reflection 116

4.8.5 Counterposition of wavevector and time-averaged Poynting vector 117

5 Dyadic Green Functions 125

5.1 Definition and properties 125

5.2 Closed-form representations 127

5.2.1 Isotropic mediums 128

5.2.2 Uniaxial dielectric-magnetic mediums 130

5.2.3 More complex mediums 132

5.3 Huygens principle 133

5.3.1 Uniaxial dielectric-magnetic mediums 134

5.3.2 Isotropic chiral mediums 136

5.4 Eigenfunction representations 136

5.4.1 Homogeneous mediums 136

5.4.2 Nonhomogeneous mediums 138

5.5 Depolarization dyadics 139

5.5.1 Ellipsoidal shape 140

5.5.2 Spherical shape 144

5.5.3 Bianisotropic mediums 149

5.6 Connection to plasmonics 150

6 Homogenization 155

6.1 Constituent mediums 156

6.2 Maxwell Garnett formalism 158

6.3 Bruggeman formalism 160

6.4 Strong-property-fluctuation theory 162

6.4.1 Background 162

6.4.2 Estimates of constitutive parameters 163

6.5 Extended homogenization formalisms 166

6.6 Anisotropy and bianisotropy via homogenization 168

6.7 Homogenized composite mediums as metamaterials 169

7 Nonlinear Mediums 179

7.1 Constitutive relations 179

7.2 Homogenization 181

7.2.1 Maxwell Garnett formalism 182

7.2.2 Strong-property-fluctuation theory 183

7.3 Nonlinearity enhancement 199

7.4 Quantum electrodynamic vacuum 200

Appendix A Dyadic Notation and Analysis 205

Epilogue 207

Index 209

About the Authors 213

From the B&N Reads Blog

Customer Reviews