Electrophosphorescent Materials and Devices / Edition 1

Electrophosphorescent Materials and Devices / Edition 1

by Mark Thompson
ISBN-10:
9814877344
ISBN-13:
9789814877343
Pub. Date:
12/14/2023
Publisher:
Jenny Stanford Publishing
ISBN-10:
9814877344
ISBN-13:
9789814877343
Pub. Date:
12/14/2023
Publisher:
Jenny Stanford Publishing
Electrophosphorescent Materials and Devices / Edition 1

Electrophosphorescent Materials and Devices / Edition 1

by Mark Thompson
$249.95
Current price is , Original price is $249.95. You
$249.95 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.


Overview

Organic LEDs (OLEDs) in mobile displays have been in large-scale production for over a decade, and OLED-based televisions are rapidly gaining traction in the marketplace. OLEDs are on the verge of entering the solid-state lighting market in a big way. The OLED technology gives higher color purity and is more efficient than any of the competing technologies. When produced at scale, OLEDs are also economical. A key limitation in the development of OLEDs was the efficient conversion of all of the electrical energy put into the device into light. Until the late 1990s, the maximum efficiency of OLEDs was limited to 25% (photons/electrons), but this limitation was removed and OLEDs with 100% efficiency were reported in the early 2000s. This advance in OLED technology was driven by the author of this book. He and his collaborators developed electrophosphorescence, which is essential in reaching the 100% efficiency that is now commonplace in commercial devices.


Product Details

ISBN-13: 9789814877343
Publisher: Jenny Stanford Publishing
Publication date: 12/14/2023
Pages: 1112
Product dimensions: 6.00(w) x 9.00(h) x (d)

About the Author

About The Author
Mark E. Thompson received his BS in chemistry in 1980 from the University of California, Berkeley, and his PhD in chemistry in 1985 from the California Institute of Technology. He was a postdoctoral fellow at Oxford University and is currently the Ray R. Irani Chair of Chemistry at the University of Southern California. His research involves the study of materials and devices for electroluminescence, photovoltaics and solar cells, chemical/biological sensing, and catalysis. Prof. Thompson is the author of approximately 400 papers in refereed professional journals and holds more than 250 patents primarily in the areas of optoelectronic applications, such as light-emitting devices and solar cells.

Table of Contents

1. Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices

Marc A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, Scott Sibley, Mark E. Thompson, and Stephen R. Forrest

 

2. Improved Energy Transfer in Electrophosphorescent Devices

D. F. O’Brien, Marc A. Baldo, Mark E. Thompson, and Stephen R. Forrest

 

3. Efficient, Saturated Red Organic Light Emitting Devices Based on Phosphorescent Platinum(II) Porphyrins

Raymond C. Kwong, Scott Sibley, Timur Dubovoy, Marc Baldo, Stephen R. Forrest, and Mark E. Thompson

 

4. Excitonic Singlet-Triplet Ratio in a Semiconducting Organic Thin Film

Marc A. Baldo, D. F. O’Brien, Mark E. Thompson, and Stephen R. Forrest

 

5. Very High-Efficiency Green Organic Light-Emitting Devices Based on Electrophosphorescence

Marc A. Baldo, Sergey Lamansky, Paul E. Burrows, Mark E. Thompson, and Stephen R. Forrest

 

6. Organic Light-Emitting Devices Based on Phosphorescent Hosts and Dyes

Raymond C. Kwong, Sergey Lamansky, and Mark E. Thompson

 

7. High-Efficiency Organic Electrophosphorescent Devices with tris(2-Phenylpyridine)Iridium Doped into Electron-Transporting Materials

Chihaya Adachi, Marc A. Baldo, Stephen R. Forrest, and Mark E. Thompson

 

8. High-Efficiency Fluorescent Organic Light-Emitting Devices Using a Phosphorescent Sensitizer

Marc A. Baldo, Mark E. Thompson, and Stephen R. Forrest

 

9. Nearly 100% Internal Phosphorescence Efficiency in an Organic Light Emitting Device

Chihaya Adachi, Marc A. Baldo, Mark E. Thompson, and Stephen R. Forrest

 

10. Endothermic Energy Transfer: A Mechanism for Generating

Very Efficient High-Energy Phosphorescent Emission in Organic Materials

Chihaya Adachi, Raymond C. Kwong, Peter Djurovich, Vadim Adamovich, Marc A. Baldo, Mark E. Thompson, and Stephen R. Forrest

 

11. High-Efficiency Yellow Double-Doped Organic Light-Emitting Devices Based on Phosphor-Sensitized Fluorescence

Brian W. D’Andrade, Marc A. Baldo, Chihaya Adachi, Jason Brooks, Mark E. Thompson, and Stephen R. Forrest

 

12. High-Efficiency Red Electrophosphorescence Devices

Chihaya Adachi, Marc A. Baldo, Stephen R. Forrest, Sergey Lamansky, Mark E. Thompson, and Raymond C. Kwong

 

13. Highly Phosphorescent Bis-Cyclometalated Iridium Complexes: Synthesis, Photophysical Characterization, and Use in Organic Light Emitting Diodes

Sergey Lamansky, Peter Djurovich, Drew Murphy, Feras Abdel-Razzaq, Hae-Eun Lee, Chihaya Adachi, Paul E. Burrows, Stephen R. Forrest, and Mark E. Thompson

 

14. Synthesis and Characterization of Phosphorescent Cyclometalated Iridium Complexes

Sergey Lamansky, Peter Djurovich, Drew Murphy, Feras Abdel-Razzaq, Raymond Kwong, Irina Tsyba, Manfred Bortz, Becky Mui, Robert Bau, and Mark E. Thompson

 

15. Synthesis and Characterization of Phosphorescent Cyclometalated Platinum Complexes

Jason Brooks, Yelizaveta Babayan, Sergey Lamansky, Peter I. Djurovich, Irina Tsyba, Robert Bau, and Mark E. Thompson

 

16. White Light Emission Using Triplet Excimers in Electrophosphorescent Organic Light-Emitting Devices

Brian W. D’Andrade, Jason Brooks, Vadim Adamovich, Mark E. Thompson, and Stephen R. Forrest

 

17. Electrophosphorescent p–i–n Organic Light-Emitting Devices for Very-High-Efficiency Flat-Panel Displays

Martin Pfeiffer, Stephen R. Forrest, Karl Leo, and Mark E. Thompson

 

18. Cyclometalated Ir Complexes in Polymer Organic Light-Emitting Devices

Sergey Lamansky, Peter I. Djurovich, Feras Abdel-Razzaq, Simona Garon, Drew L. Murphy, and Mark E. Thompson

 

19. High Efficiency Single Dopant White Electrophosphorescent Light Emitting Diodes

Vadim Adamovich, Jason Brooks, Arnold Tamayo, Alex M. Alexander, Peter I. Djurovich, Brian W. D’Andrade, Chihaya Adachi, Stephen R. Forrest, and Mark E. Thompson

 

20. High Operational Stability of Electrophosphorescent Devices

Raymond C. Kwong, Matthew R. Nugent, Lech Michalski, Tan Ngo, Kamala Rajan, Yeh-Jiun Tung, Michael S. Weaver, Theodore X. Zhou, Michael Hack, Mark E. Thompson, Stephen R. Forrest, and Julie J. Brown

 

21. Controlling Exciton Diffusion in Multilayer White Phosphorescent Organic Light Emitting Devices

Brian W. D’Andrade, Mark E. Thompson, and Stephen R. Forrest

 

22. Blue Organic Electrophosphorescence Using Exothermic Host–Guest Energy Transfer

Russell J. Holmes, Stephen R. Forrest, Yeh-Jiun Tung, Raymond C. Kwong, Julie J. Brown, Simona Garon, and Mark E. Thompson

 

23. Efficient, Deep-Blue Organic Electrophosphorescence by Guest Charge Trapping

Russell J. Holmes, Brian W. D’Andrade, Stephen R. Forrest, Xiaofan Ren, Jian Li, and Mark E. Thompson

 

24. Synthesis and Characterization of Facial and Meridional Tris-cyclometalated Iridium(III) Complexes

Arnold B. Tamayo, Bert D. Alleyne, Peter I. Djurovich, Sergey Lamansky, Irina Tsyba, Nam N. Ho, Robert Bau, and Mark E. Thompson

 

25. Phosphorescence Quenching by Conjugated Polymers

Madhusoodhanan Sudhakar, Peter I. Djurovich, Thieo E. Hogen-Esch, and Mark E. Thompson

 

26. Simultaneous Light Emission from a Mixture of Dendrimer Encapsulated Chromophores: A Model for Single-Layer Multichromophoric Organic Light-Emitting Diodes

Paul Furuta, Jason Brooks, Mark E. Thompson, and Jean M. J. Fréchet

 

27. Ultrahigh Energy Gap Hosts in Deep Blue Organic Electrophosphorescent Devices

Xiaofan Ren, Jian Li, Russell J. Holmes, Peter I. Djurovich, Stephen R. Forrest, and Mark E. Thompson

 

28. Saturated Deep Blue Organic Electrophosphorescence Using a Fluorine-Free Emitter

Russell J. Holmes, Stephen R. Forrest, Tissa Sajoto, Arnold Tamayo, Peter I. Djurovich, Mark E. Thompson, Jason Brooks, Yeh-Jiun Tung, Brian W. D’Andrade, Michael S. Weaver, Raymond C. Kwong, and Julie J. Brown

 

29. Excimer and Electron Transfer Quenching Studies of a Cyclometalated Platinum Complex

Biwu Ma, Peter I. Djurovich, and Mark E. Thompson

 

30. Synthetic Control of Excited-State Properties in Cyclometalated Ir(III) Complexes Using Ancillary Ligands

Jian Li, Peter I. Djurovich, Bert D. Alleyne, Muhammed Yousufuddin, Nam N. Ho, J. Christopher Thomas, Jonas C. Peters, Robert Bau, and Mark E. Thompson

 

31. Cationic Bis-cyclometalated Iridium(III) Diimine Complexes and Their Use in Efficient Blue, Green, and Red Electroluminescent Devices

Arnold B. Tamayo, Simona Garon, Tissa Sajoto, Peter I. Djurovich, Irina M. Tsyba, Robert Bau, and Mark E. Thompson

 

32. Blue and Near-UV Phosphorescence from Iridium Complexes with Cyclometalated Pyrazolyl or N-Heterocyclic Carbene Ligands

Tissa Sajoto, Peter I. Djurovich, Arnold Tamayo, Muhammed Yousufuddin, Robert Bau, Mark E. Thompson, Russell J. Holmes, and Stephen R. Forrest

 

33. Synthetic Control of Pt··· Pt Separation and Photophysics of Binuclear Platinum Complexes

Biwu Ma, Jian Li, Peter I. Djurovich, Muhammed Yousufuddin, Robert Bau, and Mark E. Thompson

 

34. Platinum Binuclear Complexes as Phosphorescent Dopants for Monochromatic and White Organic Light-Emitting

Diodes

Biwu Ma, Peter I. Djurovich, Simona Garon, Bert Alleyne, and Mark E. Thompson

 

35. Management of Singlet and Triplet Excitons for Efficient White Organic Light-Emitting Devices

Yiru Sun, Noel C. Giebink, Hiroshi Kanno, Biwu Ma, Mark E. Thompson, and Stephen R. Forrest

 

36. Highly Efficient, Near-Infrared Electrophosphorescence from a Pt–Metalloporphyrin Complex

Carsten Borek, Kenneth Hanson, Peter I. Djurovich, Mark E. Thompson, Kristen Aznavour, Robert Bau, Yiru Sun, Stephen R. Forrest, Jason Brooks, Lech Michalski, and Julie Brown

 

37. Intrinsic Luminance Loss in Phosphorescent Small-Molecule Organic Light Emitting Devices due to Bimolecular Annihilation Reactions

Noel C. Giebink, Brian W. D’Andrade, Michael S. Weaver, P. B. Mackenzie, Julie J. Brown, Mark E. Thompson, and Stephen R. Forrest

 

38. Blue Light Emitting Ir(III) Compounds for OLEDs: New Insights into Ancillary Ligand Effects on the Emitting Triplet State

Andreas F. Rausch, Mark E. Thompson, and Hartmut Yersin

 

39. Temperature Dependence of Blue Phosphorescent Cyclometalated Ir(III) Complexes

Tissa Sajoto, Peter I. Djurovich, Arnold B. Tamayo, Jonas Oxgaard, William A. Goddard III, and

Mark E. Thompson

 

40. Study of Energy Transfer and Triplet Exciton Diffusion in Hole-Transporting Host Materials

Chao Wu, Peter I. Djurovich, and Mark E. Thompson

 

41. Synthesis and Characterization of Phosphorescent Three-Coordinate Cu(I)–NHC Complexes

Valentina A. Krylova, Peter I. Djurovich, Matthew T. Whited, and Mark E. Thompson

 

42. A Codeposition Route to CuI–Pyridine Coordination Complexes for Organic Light-Emitting Diodes

Zhiwei Liu, Munzarin F. Qayyum, Chao Wu, Matthew T. Whited, Peter I. Djurovich, Keith O. Hodgson, Britt Hedman, Edward I. Solomon, and Mark E. Thompson

 

43. Structural and Photophysical Studies of Phosphorescent Three-Coordinate Copper(I) Complexes Supported by an N-Heterocyclic Carbene Ligand

Valentina A. Krylova, Peter I. Djurovich, Jacob W. Aronson, Ralf Haiges, Matthew T. Whited, and Mark E. Thompson

 

44. Phosphorescence versus Thermally Activated Delayed Fluorescence: Controlling Singlet–Triplet Splitting in Brightly Emitting and Sublimable Cu(I) Compounds

Markus J. Leitl, Valentina A. Krylova, Peter I. Djurovich, Mark E. Thompson, and Hartmut Yersin

 

45. Control of Emission Colour with N-Heterocyclic Carbene (NHC) Ligands in Phosphorescent Three-Coordinate Cu(I) Complexes

Valentina A. Krylova, Peter I. Djurovich, Brian L. Conley, Ralf Haiges, Matthew T. Whited, Travis J. Williams, and Mark E. Thompson

 

46. Synthesis and Characterization of Phosphorescent Platinum and Iridium Complexes with Cyclometalated Corannulene

John W. Facendola, Martin Seifrid, Jay Siegel, Peter I. Djurovich, and Mark E. Thompson

 

47. Understanding and Predicting the Orientation of Heteroleptic Phosphors in Organic Light-Emitting Materials

Matthew J. Jurow, Christian Mayr, Tobias D. Schmidt, Thomas Lampe, Peter I. Djurovich, Wolfgang Brütting, and Mark E. Thompson

 

48. Deep Blue Phosphorescent Organic Light-Emitting Diodes with Very High Brightness and Efficiency

Jaesang Lee, Hsiao-Fan Chen, Thilini Batagoda, Caleb Coburn, Peter I. Djurovich, Mark E. Thompson, and Stephen R. Forrest

 

49. Hot Excited State Management for Long-Lived Blue Phosphorescent Organic Light-Emitting Diodes

Jaesang Lee, Changyeong Jeong, Thilini Batagoda, Caleb Coburn, Mark E. Thompson, and Stephen R. Forrest

 

50. Eliminating Nonradiative Decay in Cu(I) Emitters: > 99% Quantum Efficiency and Microsecond Lifetime

Rasha Hamze, Jesse L. Peltier, Daniel Sylvinson, Moonchul Jung, Jose Cardenas, Ralf Haiges, Michele Soleilhavoup, Rodolphe Jazzar, Peter I. Djurovich, Guy Bertrand, and Mark E. Thompson

 

51. Rapid Multiscale Computational Screening for OLED Host Materials

Daniel Sylvinson M. R., Hsiao-Fan Chen, Lauren M. Martin, Patrick J. G. Saris, and Mark E. Thompson

 

52. “Quick-Silver” from a Systematic Study of Highly Luminescent, Two-Coordinate, d10 Coinage Metal Complexes

Rasha Hamze, Shuyang Shi, Savannah C. Kapper, Daniel Sylvinson Muthiah Ravinson, Laura Estergreen, Moon-Chul Jung, Abegail C. Tadle, Ralf Haiges, Peter I. Djurovich, Jesse L. Peltier, Rodolphe Jazzar, Guy Bertrand, Stephen E. Bradforth, and Mark E. Thompson

 

53. Highly Efficient Photo- and Electroluminescence from Two-Coordinate Cu(I) Complexes Featuring Nonconventional N-Heterocyclic Carbenes

Shuyang Shi, Moon Chul Jung, Caleb Coburn, Abegail Tadle, Daniel Sylvinson M. R., Peter I. Djurovich, Stephen R. Forrest, and Mark E. Thompson

 

54. Platinum-Functionalized Random Copolymers for Use in Solution-Processible, Efficient, Near-White Organic Light-Emitting Diodes

Paul T. Furuta, Lan Deng, Simona Garon, Mark E. Thompson, and Jean M. J. Fréchet

From the B&N Reads Blog

Customer Reviews