Elements of Quantum Optics
Elements of Quantum Optics gives a self-contained and broad coverage of the basic elements necessary to understand and carry out research in laser physics and quantum optics, including a review of basic quantum mechanics and pedagogical introductions to system-reservoir interactions and to second quantization. The text reveals the close connection between many seemingly unrelated topics, such as probe absorption, four-wave mixing, optical instabilities, resonance fluorescence and squeezing. It also comprises discussions of cavity quantum electrodynamics and atom optics. The 4th edition includes a new chapter on quantum entanglement and quantum information, as well as added discussions of the quantum beam splitter, electromagnetically induced transparency, slow light, and the input-output formalism needed to understand many problems in quantum optics. It also provides an expanded treatment of the minimum-coupling Hamiltonian and a simple derivation of the Gross-Pitaevskii equation, an important gateway to research in ultracold atoms and molecules.

1100028244
Elements of Quantum Optics
Elements of Quantum Optics gives a self-contained and broad coverage of the basic elements necessary to understand and carry out research in laser physics and quantum optics, including a review of basic quantum mechanics and pedagogical introductions to system-reservoir interactions and to second quantization. The text reveals the close connection between many seemingly unrelated topics, such as probe absorption, four-wave mixing, optical instabilities, resonance fluorescence and squeezing. It also comprises discussions of cavity quantum electrodynamics and atom optics. The 4th edition includes a new chapter on quantum entanglement and quantum information, as well as added discussions of the quantum beam splitter, electromagnetically induced transparency, slow light, and the input-output formalism needed to understand many problems in quantum optics. It also provides an expanded treatment of the minimum-coupling Hamiltonian and a simple derivation of the Gross-Pitaevskii equation, an important gateway to research in ultracold atoms and molecules.

69.99 In Stock
Elements of Quantum Optics

Elements of Quantum Optics

Elements of Quantum Optics

Elements of Quantum Optics

Paperback(Fourth Edition 2007)

$69.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Elements of Quantum Optics gives a self-contained and broad coverage of the basic elements necessary to understand and carry out research in laser physics and quantum optics, including a review of basic quantum mechanics and pedagogical introductions to system-reservoir interactions and to second quantization. The text reveals the close connection between many seemingly unrelated topics, such as probe absorption, four-wave mixing, optical instabilities, resonance fluorescence and squeezing. It also comprises discussions of cavity quantum electrodynamics and atom optics. The 4th edition includes a new chapter on quantum entanglement and quantum information, as well as added discussions of the quantum beam splitter, electromagnetically induced transparency, slow light, and the input-output formalism needed to understand many problems in quantum optics. It also provides an expanded treatment of the minimum-coupling Hamiltonian and a simple derivation of the Gross-Pitaevskii equation, an important gateway to research in ultracold atoms and molecules.


Product Details

ISBN-13: 9783642093524
Publisher: Springer Berlin Heidelberg
Publication date: 11/10/2010
Edition description: Fourth Edition 2007
Pages: 507
Product dimensions: 6.10(w) x 9.25(h) x 0.24(d)

Table of Contents

Classical Electromagnetic Fields.- Classical Nonlinear Optics.- Quantum Mechanical Background.- Mixtures and the Density Operator.- CW Field Interactions.- Mechanical Effects of Light.- to Laser Theory.- Optical Bistability.- Saturation Spectroscopy.- Three and Four Wave Mixing.- Time-Varying Phenomena in Cavities.- Coherent Transients.- Field Quantization.- Interaction Between Atoms and Quantized Fields.- System-Reservoir Interactions.- Resonance Fluorescence.- Squeezed States of Light.- Cavity Quantum Electrodynamics.- Quantum Theory of a Laser.- Entanglement, Bell Inequalities and Quantum Information.
From the B&N Reads Blog

Customer Reviews