Empirical Research in Software Engineering: Concepts, Analysis, and Applications
Empirical research has now become an essential component of software engineering yet software practitioners and researchers often lack an understanding of how the empirical procedures and practices are applied in the field. Empirical Research in Software Engineering: Concepts, Analysis, and Applications shows how to implement empirical research processes, procedures, and practices in software engineering.

Written by a leading researcher in empirical software engineering, the book describes the necessary steps to perform replicated and empirical research. It explains how to plan and design experiments, conduct systematic reviews and case studies, and analyze the results produced by the empirical studies.

The book balances empirical research concepts with exercises, examples, and real-life case studies, making it suitable for a course on empirical software engineering. The author discusses the process of developing predictive models, such as defect prediction and change prediction, on data collected from source code repositories. She also covers the application of machine learning techniques in empirical software engineering, includes guidelines for publishing and reporting results, and presents popular software tools for carrying out empirical studies.

1133123023
Empirical Research in Software Engineering: Concepts, Analysis, and Applications
Empirical research has now become an essential component of software engineering yet software practitioners and researchers often lack an understanding of how the empirical procedures and practices are applied in the field. Empirical Research in Software Engineering: Concepts, Analysis, and Applications shows how to implement empirical research processes, procedures, and practices in software engineering.

Written by a leading researcher in empirical software engineering, the book describes the necessary steps to perform replicated and empirical research. It explains how to plan and design experiments, conduct systematic reviews and case studies, and analyze the results produced by the empirical studies.

The book balances empirical research concepts with exercises, examples, and real-life case studies, making it suitable for a course on empirical software engineering. The author discusses the process of developing predictive models, such as defect prediction and change prediction, on data collected from source code repositories. She also covers the application of machine learning techniques in empirical software engineering, includes guidelines for publishing and reporting results, and presents popular software tools for carrying out empirical studies.

130.0 In Stock
Empirical Research in Software Engineering: Concepts, Analysis, and Applications

Empirical Research in Software Engineering: Concepts, Analysis, and Applications

by Ruchika Malhotra
Empirical Research in Software Engineering: Concepts, Analysis, and Applications

Empirical Research in Software Engineering: Concepts, Analysis, and Applications

by Ruchika Malhotra

Hardcover

$130.00 
  • SHIP THIS ITEM
    In stock. Ships in 3-7 days. Typically arrives in 3 weeks.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Empirical research has now become an essential component of software engineering yet software practitioners and researchers often lack an understanding of how the empirical procedures and practices are applied in the field. Empirical Research in Software Engineering: Concepts, Analysis, and Applications shows how to implement empirical research processes, procedures, and practices in software engineering.

Written by a leading researcher in empirical software engineering, the book describes the necessary steps to perform replicated and empirical research. It explains how to plan and design experiments, conduct systematic reviews and case studies, and analyze the results produced by the empirical studies.

The book balances empirical research concepts with exercises, examples, and real-life case studies, making it suitable for a course on empirical software engineering. The author discusses the process of developing predictive models, such as defect prediction and change prediction, on data collected from source code repositories. She also covers the application of machine learning techniques in empirical software engineering, includes guidelines for publishing and reporting results, and presents popular software tools for carrying out empirical studies.


Product Details

ISBN-13: 9781498719728
Publisher: Taylor & Francis
Publication date: 10/05/2015
Pages: 498
Product dimensions: 7.00(w) x 10.00(h) x (d)

About the Author

Ruchika Malhotra is an assistant professor in the Department of Software Engineering at Delhi Technological University (formerly Delhi College of Engineering). She was awarded the prestigious UGC Raman Fellowship for pursuing post-doctoral research in the Department of Computer and Information Science at Indiana University–Purdue University. She received her master’s and doctorate degrees in software engineering from the University School of Information Technology of Guru Gobind Singh Indraprastha University. She received the IBM Best Faculty Award in 2013 and has published more than 100 research papers in international journals and conferences. Her research interests include software testing, improving software quality, statistical and adaptive prediction models, software metrics, neural nets modeling, and the definition and validation of software metrics.

Table of Contents

Introduction. Systematic Literature Reviews. Software Metrics. Experimental Design. Mining Data from Software Repositories. Data Analysis and Statistical Testing. Model Development and Interpretation. Validity Threats. Reporting Results. Mining Unstructured Data. Demonstrating Empirical Procedures. Tools for Analyzing Data. Appendix. References. Index.

From the B&N Reads Blog

Customer Reviews