Enhancing Endurance of Non Volatile Memory in Embedded Systems
This book is focused on enhancing the endurance of Non-Volatile Random Access Memory (NVRAM) for embedded systems applications. It describes the methodology that combines optimized machine learning algorithms based on workload prediction and data compression techniques to prolong the lifespan of NVRAM. The framework utilizes an Instruction Per Cycle-based Dynamic Pattern Compression model to analyze and compress workloads, as well as a Workload Hybrid Energy Adaptive Learning model to categorize and further compress data for storage. The book provides a solution for improving NVRAM endurance, which is crucial for the performance of embedded devices, by addressing workload prediction and efficient compression.
1145956193
Enhancing Endurance of Non Volatile Memory in Embedded Systems
This book is focused on enhancing the endurance of Non-Volatile Random Access Memory (NVRAM) for embedded systems applications. It describes the methodology that combines optimized machine learning algorithms based on workload prediction and data compression techniques to prolong the lifespan of NVRAM. The framework utilizes an Instruction Per Cycle-based Dynamic Pattern Compression model to analyze and compress workloads, as well as a Workload Hybrid Energy Adaptive Learning model to categorize and further compress data for storage. The book provides a solution for improving NVRAM endurance, which is crucial for the performance of embedded devices, by addressing workload prediction and efficient compression.
74.0 In Stock
Enhancing Endurance of Non Volatile Memory in Embedded Systems

Enhancing Endurance of Non Volatile Memory in Embedded Systems

Enhancing Endurance of Non Volatile Memory in Embedded Systems

Enhancing Endurance of Non Volatile Memory in Embedded Systems

Paperback

$74.00 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This book is focused on enhancing the endurance of Non-Volatile Random Access Memory (NVRAM) for embedded systems applications. It describes the methodology that combines optimized machine learning algorithms based on workload prediction and data compression techniques to prolong the lifespan of NVRAM. The framework utilizes an Instruction Per Cycle-based Dynamic Pattern Compression model to analyze and compress workloads, as well as a Workload Hybrid Energy Adaptive Learning model to categorize and further compress data for storage. The book provides a solution for improving NVRAM endurance, which is crucial for the performance of embedded devices, by addressing workload prediction and efficient compression.

Product Details

ISBN-13: 9786207804832
Publisher: LAP Lambert Academic Publishing
Publication date: 06/14/2024
Pages: 136
Product dimensions: 6.00(w) x 9.00(h) x 0.32(d)
From the B&N Reads Blog

Customer Reviews