Enumerative Combinatorics

Enumerative Combinatorics

by Richard Stanley

Paperback(Softcover reprint of the original 1st ed. 1986)

View All Available Formats & Editions
Choose Expedited Shipping at checkout for guaranteed delivery by Friday, September 20


This second volume of a two-volume basic introduction to enumerative combinatorics covers the composition of generating functions, trees, algebraic generating functions, D-finite generating functions, noncommutative generating functions, and symmetric functions. The chapter on symmetric functions provides the only available treatment of this subject suitable for an introductory graduate course on combinatorics, and includes the important Robinson-Schensted-Knuth algorithm. Also covered are connections between symmetric functions and representation theory. An appendix by Sergey Fomin covers some deeper aspects of symmetric function theory, including jeu de taquin and the Littlewood-Richardson rule. As in Volume 1, the exercises play a vital role in developing the material. There are over 250 exercises, all with solutions or references to solutions, many of which concern previously unpublished results. Graduate students and research mathematicians who wish to apply combinatorics to their work will find this an authoritative reference.

Product Details

ISBN-13: 9781461597650
Publisher: Springer US
Publication date: 11/26/2012
Series: The Wadsworth & Brooks/Cole Mathematics Series , #1
Edition description: Softcover reprint of the original 1st ed. 1986
Pages: 306
Product dimensions: 6.10(w) x 9.25(h) x 0.03(d)

Table of Contents

5. Composition of generating functions;
6. Algebraic, D-finite, and noncommutative generating functions;
7. Symmetric functions;
Appendix Sergey Fomin.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews