Evolutionary Deep Neural Architecture Search: Fundamentals, Methods, and Recent Advances
This book systematically narrates the fundamentals, methods, and recent advances of evolutionary deep neural architecture search chapter by chapter. This will provide the target readers with sufficient details learning from scratch. In particular, the method parts are devoted to the architecture search of unsupervised and supervised deep neural networks. The people, who would like to use deep neural networks but have no/limited expertise in manually designing the optimal deep architectures, will be the main audience. This may include the researchers who focus on developing novel evolutionary deep architecture search methods for general tasks, the students who would like to study the knowledge related to evolutionary deep neural architecture search and perform related research in the future, and the practitioners from the fields of computer vision, natural language processing, and others where the deep neural networks have been successfully and largely used in their respective fields.

1142014904
Evolutionary Deep Neural Architecture Search: Fundamentals, Methods, and Recent Advances
This book systematically narrates the fundamentals, methods, and recent advances of evolutionary deep neural architecture search chapter by chapter. This will provide the target readers with sufficient details learning from scratch. In particular, the method parts are devoted to the architecture search of unsupervised and supervised deep neural networks. The people, who would like to use deep neural networks but have no/limited expertise in manually designing the optimal deep architectures, will be the main audience. This may include the researchers who focus on developing novel evolutionary deep architecture search methods for general tasks, the students who would like to study the knowledge related to evolutionary deep neural architecture search and perform related research in the future, and the practitioners from the fields of computer vision, natural language processing, and others where the deep neural networks have been successfully and largely used in their respective fields.

139.99 In Stock
Evolutionary Deep Neural Architecture Search: Fundamentals, Methods, and Recent Advances

Evolutionary Deep Neural Architecture Search: Fundamentals, Methods, and Recent Advances

Evolutionary Deep Neural Architecture Search: Fundamentals, Methods, and Recent Advances

Evolutionary Deep Neural Architecture Search: Fundamentals, Methods, and Recent Advances

Paperback(1st ed. 2023)

$139.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This book systematically narrates the fundamentals, methods, and recent advances of evolutionary deep neural architecture search chapter by chapter. This will provide the target readers with sufficient details learning from scratch. In particular, the method parts are devoted to the architecture search of unsupervised and supervised deep neural networks. The people, who would like to use deep neural networks but have no/limited expertise in manually designing the optimal deep architectures, will be the main audience. This may include the researchers who focus on developing novel evolutionary deep architecture search methods for general tasks, the students who would like to study the knowledge related to evolutionary deep neural architecture search and perform related research in the future, and the practitioners from the fields of computer vision, natural language processing, and others where the deep neural networks have been successfully and largely used in their respective fields.


Product Details

ISBN-13: 9783031168703
Publisher: Springer International Publishing
Publication date: 11/09/2022
Series: Studies in Computational Intelligence , #1070
Edition description: 1st ed. 2023
Pages: 331
Product dimensions: 6.10(w) x 9.25(h) x (d)

Table of Contents

Part I: Fundamentals and Backgrounds.- Evolutionary Computation.- Deep Neural Networks.- Part II: Evolutionary Deep Neural Architecture Search for Unsupervised DNNs.- Architecture Design for Stacked AEs and DBNs.- Architecture Design for Convolutional Auto-Encoders.- Architecture Design for Variational Auto-Encoders.- Part III: Evolutionary Deep Neural Architecture Search for Supervised DNNs.- Architecture Design for Plain CNNs.- Architecture Design for RBs and DBs Based CNNs.- Architecture Design for Skip-Connection Based CNNs.- Hybrid GA and PSO for Architecture Design.- Internet Prool Based Architecture Design.- Differential Evolution for Architecture Design.- Architecture Design for Analyzing Hyperspectral Images.- Part IV: Recent Advances in Evolutionary Deep Neural Architecture Search.- Encoding Space Based on Directed Acyclic Graphs.- End-to-End Performance Predictors.- Deep Neural Architecture Pruning.- Deep Neural Architecture Compression.- Distribution Training Framework for Architecture Design.
From the B&N Reads Blog

Customer Reviews