Experimental Design for Laboratory Biologists
Specifically intended for lab-based biomedical researchers, this practical guide shows how to design experiments that are reproducible, with low bias, high precision, and widely applicable results. With specific examples from research using both cell cultures and model organisms, it explores key ideas in experimental design, assesses common designs, and shows how to plan a successful experiment. It demonstrates how to control biological and technical factors that can introduce bias or add noise, and covers rarely discussed topics such as graphical data exploration, choosing outcome variables, data quality control checks, and data pre-processing. It also shows how to use R for analysis, and is designed for those with no prior experience. An accompanying website (https://stanlazic.github.io/EDLB.html) includes all R code, data sets, and the labstats R package. This is an ideal guide for anyone conducting lab-based biological research, from students to principle investigators working in either academia or industry.
1148673810
Experimental Design for Laboratory Biologists
Specifically intended for lab-based biomedical researchers, this practical guide shows how to design experiments that are reproducible, with low bias, high precision, and widely applicable results. With specific examples from research using both cell cultures and model organisms, it explores key ideas in experimental design, assesses common designs, and shows how to plan a successful experiment. It demonstrates how to control biological and technical factors that can introduce bias or add noise, and covers rarely discussed topics such as graphical data exploration, choosing outcome variables, data quality control checks, and data pre-processing. It also shows how to use R for analysis, and is designed for those with no prior experience. An accompanying website (https://stanlazic.github.io/EDLB.html) includes all R code, data sets, and the labstats R package. This is an ideal guide for anyone conducting lab-based biological research, from students to principle investigators working in either academia or industry.
206.0 Out Of Stock
Experimental Design for Laboratory Biologists

Experimental Design for Laboratory Biologists

by Stanley E. Lazic
Experimental Design for Laboratory Biologists

Experimental Design for Laboratory Biologists

by Stanley E. Lazic

Hardcover

$206.00 
  • SHIP THIS ITEM
    Temporarily Out of Stock Online
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Specifically intended for lab-based biomedical researchers, this practical guide shows how to design experiments that are reproducible, with low bias, high precision, and widely applicable results. With specific examples from research using both cell cultures and model organisms, it explores key ideas in experimental design, assesses common designs, and shows how to plan a successful experiment. It demonstrates how to control biological and technical factors that can introduce bias or add noise, and covers rarely discussed topics such as graphical data exploration, choosing outcome variables, data quality control checks, and data pre-processing. It also shows how to use R for analysis, and is designed for those with no prior experience. An accompanying website (https://stanlazic.github.io/EDLB.html) includes all R code, data sets, and the labstats R package. This is an ideal guide for anyone conducting lab-based biological research, from students to principle investigators working in either academia or industry.

Product Details

ISBN-13: 9781107074293
Publisher: Cambridge University Press
Publication date: 12/08/2016
Pages: 229
Product dimensions: 7.60(w) x 9.92(h) x 0.98(d)

About the Author

Stanley E. Lazic holds a PhD in Neuroscience and a Masters degree in Computational Biology from the University of Cambridge and has conducted research at the University of Oxford, the University of Cambridge, and Harvard University, Massachusetts. He has written several papers on reproducible research and the design and analysis of biological experiments, and has published in Science and Nature. He is currently a Team Leader in Quantitative Biology (Statistics) at AstraZeneca.

Table of Contents

1. Introduction: 1.1 What is reproducibility?; 1.2 The psychology of scientific discovery; 1.3 Are most published results wrong?; 1.4 Frequentist statistical interference; 1.5 Which statistics software to use?; 2. Key ideas in experimental design: 2.1 Learning versus confirming experiments; 2.2 The fundamental experimental design equation; 2.3 Randomisation; 2.4 Blocking; 2.5 Blinding; 2.6 Effect type: fixed versus random; 2.7 Factor arrangement: crossed versus nested; 2.8 Interactions between variables; 2.9 Sampling; 2.10 Use of controls; 2.11 Front-aligned versus end-aligned designs; 2.12 Heterogeneity and confounding; 3. Replication (what is 'N'?): 3.1 Biological units; 3.2 Experimental units; 3.3 Observational units; 3.4 Relationship between units; 3.5 How is the experimental unit defined in other disciplines?; 4. Analysis of common designs: 4.1 Preliminary concepts; 4.2 Background to the designs; 4.3 Completely randomised designs; 4.4 Randomised block designs; 4.5 Split-unit designs; 4.6 Repeated measures designs; 5. Planning for success: 5.1 Choosing a good outcome variable; 5.2 Power analysis and sample size calculations; 5.3 Optimal experimental designs (rules of thumb); 5.4 When to stop collecting data?; 5.5 Putting it all together; 5.6 How to get lucky; 5.7 The statistical analysis plan; 6. Exploratory data analysis: 6.1 Quality control checks; 6.2 Preprocessing; 6.3 Understanding the structure of the data; Appendix A. Introduction to R; Appendix B. Glossary.
From the B&N Reads Blog

Customer Reviews