Extracting Knowledge From Time Series: An Introduction to Nonlinear Empirical Modeling
Mathematical modelling is ubiquitous. Almost every book in exact science touches on mathematical models of a certain class of phenomena, on more or less specific approaches to construction and investigation of models, on their applications, etc. As many textbooks with similar titles, Part I of our book is devoted to general qu- tions of modelling. Part II reffects our professional interests as physicists who spent much time to investigations in the field of non-linear dynamics and mathematical modelling from discrete sequences of experimental measurements (time series). The latter direction of research is known for a long time as “system identification” in the framework of mathematical statistics and automatic control theory. It has its roots in the problem of approximating experimental data points on a plane with a smooth curve. Currently, researchers aim at the description of complex behaviour (irregular, chaotic, non-stationary and noise-corrupted signals which are typical of real-world objects and phenomena) with relatively simple non-linear differential or difference model equations rather than with cumbersome explicit functions of time. In the second half of the twentieth century, it has become clear that such equations of a s-—ciently low order can exhibit non-trivial solutions that promise sufficiently simple modelling of complex processes; according to the concepts of non-linear dynamics, chaotic regimes can be demonstrated already by a third-order non-linear ordinary differential equation, while complex behaviour in a linear model can be induced either by random influence (noise) or by a very high order of equations.
1101679469
Extracting Knowledge From Time Series: An Introduction to Nonlinear Empirical Modeling
Mathematical modelling is ubiquitous. Almost every book in exact science touches on mathematical models of a certain class of phenomena, on more or less specific approaches to construction and investigation of models, on their applications, etc. As many textbooks with similar titles, Part I of our book is devoted to general qu- tions of modelling. Part II reffects our professional interests as physicists who spent much time to investigations in the field of non-linear dynamics and mathematical modelling from discrete sequences of experimental measurements (time series). The latter direction of research is known for a long time as “system identification” in the framework of mathematical statistics and automatic control theory. It has its roots in the problem of approximating experimental data points on a plane with a smooth curve. Currently, researchers aim at the description of complex behaviour (irregular, chaotic, non-stationary and noise-corrupted signals which are typical of real-world objects and phenomena) with relatively simple non-linear differential or difference model equations rather than with cumbersome explicit functions of time. In the second half of the twentieth century, it has become clear that such equations of a s-—ciently low order can exhibit non-trivial solutions that promise sufficiently simple modelling of complex processes; according to the concepts of non-linear dynamics, chaotic regimes can be demonstrated already by a third-order non-linear ordinary differential equation, while complex behaviour in a linear model can be induced either by random influence (noise) or by a very high order of equations.
54.99 In Stock
Extracting Knowledge From Time Series: An Introduction to Nonlinear Empirical Modeling

Extracting Knowledge From Time Series: An Introduction to Nonlinear Empirical Modeling

Extracting Knowledge From Time Series: An Introduction to Nonlinear Empirical Modeling

Extracting Knowledge From Time Series: An Introduction to Nonlinear Empirical Modeling

Hardcover(2010)

$54.99 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Mathematical modelling is ubiquitous. Almost every book in exact science touches on mathematical models of a certain class of phenomena, on more or less specific approaches to construction and investigation of models, on their applications, etc. As many textbooks with similar titles, Part I of our book is devoted to general qu- tions of modelling. Part II reffects our professional interests as physicists who spent much time to investigations in the field of non-linear dynamics and mathematical modelling from discrete sequences of experimental measurements (time series). The latter direction of research is known for a long time as “system identification” in the framework of mathematical statistics and automatic control theory. It has its roots in the problem of approximating experimental data points on a plane with a smooth curve. Currently, researchers aim at the description of complex behaviour (irregular, chaotic, non-stationary and noise-corrupted signals which are typical of real-world objects and phenomena) with relatively simple non-linear differential or difference model equations rather than with cumbersome explicit functions of time. In the second half of the twentieth century, it has become clear that such equations of a s-—ciently low order can exhibit non-trivial solutions that promise sufficiently simple modelling of complex processes; according to the concepts of non-linear dynamics, chaotic regimes can be demonstrated already by a third-order non-linear ordinary differential equation, while complex behaviour in a linear model can be induced either by random influence (noise) or by a very high order of equations.

Product Details

ISBN-13: 9783642126000
Publisher: Springer Berlin Heidelberg
Publication date: 09/07/2010
Series: Springer Series in Synergetics
Edition description: 2010
Pages: 410
Product dimensions: 6.30(w) x 9.20(h) x 1.10(d)

Table of Contents

Models And Forecast.- The Concept of Model. What is Remarkable in Mathematical Models.- Two Approaches to Modelling and Forecast.- Dynamical (Deterministic) Models of Evolution.- Shastic Models of Evolution.- Modeling From Time Series.- Problem Posing in Modelling from Data Series.- Data Series as a Source for Modelling.- Restoration of Explicit Temporal Dependencies.- Model Equations: Parameter Estimation.- Model Equations: Restoration of Equivalent Characteristics.- Model Equations: “Black Box” Reconstruction.- Practical Applications of Empirical Modelling.- Identification of Directional Couplings.- Outdoor Examples.
From the B&N Reads Blog

Customer Reviews