Factorization Models for Multi-Relational Data
Mining multi-relational data has gained relevance in the last years and found applications in a number of tasks like recommender systems, link prediction, RDF mining, natural language processing, protein-interaction prediction and social network analysis just to cite a few. Appropriate machine learning models for such tasks must not only be able to operate on large scale scenarios, but also deal with noise, partial inconsistencies, ambiguities, or duplicate entries in the data. In recent years there has been a growing interest on multi-relational factorization models since they have shown to be a scalable and effective approach for multi-relational learning. This thesis formalizes the relational learning problem and investigates open issues in the state-of-the-art factorization models for multi-relational data. Specifically it studies how to deal with the open world assumption present in many real world relational datasets and how to optimize models for multiple target relations.
1147487404
Factorization Models for Multi-Relational Data
Mining multi-relational data has gained relevance in the last years and found applications in a number of tasks like recommender systems, link prediction, RDF mining, natural language processing, protein-interaction prediction and social network analysis just to cite a few. Appropriate machine learning models for such tasks must not only be able to operate on large scale scenarios, but also deal with noise, partial inconsistencies, ambiguities, or duplicate entries in the data. In recent years there has been a growing interest on multi-relational factorization models since they have shown to be a scalable and effective approach for multi-relational learning. This thesis formalizes the relational learning problem and investigates open issues in the state-of-the-art factorization models for multi-relational data. Specifically it studies how to deal with the open world assumption present in many real world relational datasets and how to optimize models for multiple target relations.
31.11 In Stock
Factorization Models for Multi-Relational Data

Factorization Models for Multi-Relational Data

by Lucas Drumond
Factorization Models for Multi-Relational Data

Factorization Models for Multi-Relational Data

by Lucas Drumond

Paperback

$31.11 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Mining multi-relational data has gained relevance in the last years and found applications in a number of tasks like recommender systems, link prediction, RDF mining, natural language processing, protein-interaction prediction and social network analysis just to cite a few. Appropriate machine learning models for such tasks must not only be able to operate on large scale scenarios, but also deal with noise, partial inconsistencies, ambiguities, or duplicate entries in the data. In recent years there has been a growing interest on multi-relational factorization models since they have shown to be a scalable and effective approach for multi-relational learning. This thesis formalizes the relational learning problem and investigates open issues in the state-of-the-art factorization models for multi-relational data. Specifically it studies how to deal with the open world assumption present in many real world relational datasets and how to optimize models for multiple target relations.

Product Details

ISBN-13: 9783954047345
Publisher: Cuvillier
Publication date: 06/20/2014
Pages: 136
Product dimensions: 5.83(w) x 8.27(h) x 0.29(d)
From the B&N Reads Blog

Customer Reviews