Filtered Rayleigh Scattering (FRS) is a non-intrusive, laser-based flow characterization technique that consists of a narrow linewidth laser, a molecular absorption filter, and a high resolution camera behind the filter to record images. Gases of different species have different molecular scattering cross-sections that become apparent as they pass through the interrogating laser light source, and this difference is used to discriminate between the different gaseous components. This study focuses on the behavior of a buoyant helium jet exiting horizontally into ambient air, and more specifically this jet's tendency to form side lobes that are discharged from the core fluid under low flow rate conditions. This jet behavior is documented and examined with relation to Froude, Grashof, and Reynolds numbers, and the behavior patterns are noted.
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.
This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.
As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Filtered Rayleigh Scattering (FRS) is a non-intrusive, laser-based flow characterization technique that consists of a narrow linewidth laser, a molecular absorption filter, and a high resolution camera behind the filter to record images. Gases of different species have different molecular scattering cross-sections that become apparent as they pass through the interrogating laser light source, and this difference is used to discriminate between the different gaseous components. This study focuses on the behavior of a buoyant helium jet exiting horizontally into ambient air, and more specifically this jet's tendency to form side lobes that are discharged from the core fluid under low flow rate conditions. This jet behavior is documented and examined with relation to Froude, Grashof, and Reynolds numbers, and the behavior patterns are noted.
This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work.
This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.
As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.
Filtered Rayleigh Scattering Measurements in a Buoyant Flow Field
142
Filtered Rayleigh Scattering Measurements in a Buoyant Flow Field
142Product Details
| ISBN-13: | 9781025088556 |
|---|---|
| Publisher: | Hutson Street Press |
| Publication date: | 05/22/2025 |
| Pages: | 142 |
| Product dimensions: | 6.14(w) x 9.21(h) x 0.30(d) |