Finite Element Model Updating Using Computational Intelligence Techniques: Applications to Structural Dynamics
FEM updating allows FEMs to be tuned better to reflect measured data. It can be conducted using two different statistical frameworks: the maximum likelihood approach and Bayesian approaches. This book applies both strategies to the field of structural mechanics, using vibration data. Computational intelligence techniques including: multi-layer perceptron neural networks; particle swarm and GA-based optimization methods; simulated annealing; response surface methods; and expectation maximization algorithms, are proposed to facilitate the updating process. Based on these methods, the most appropriate updated FEM is selected, a problem that traditional FEM updating has not addressed. This is found to incorporate engineering judgment into finite elements through the formulations of prior distributions. Case studies, demonstrating the principles test the viability of the approaches, and. by critically analysing the state of the art in FEM updating, this book identifies new research directions.
1133131061
Finite Element Model Updating Using Computational Intelligence Techniques: Applications to Structural Dynamics
FEM updating allows FEMs to be tuned better to reflect measured data. It can be conducted using two different statistical frameworks: the maximum likelihood approach and Bayesian approaches. This book applies both strategies to the field of structural mechanics, using vibration data. Computational intelligence techniques including: multi-layer perceptron neural networks; particle swarm and GA-based optimization methods; simulated annealing; response surface methods; and expectation maximization algorithms, are proposed to facilitate the updating process. Based on these methods, the most appropriate updated FEM is selected, a problem that traditional FEM updating has not addressed. This is found to incorporate engineering judgment into finite elements through the formulations of prior distributions. Case studies, demonstrating the principles test the viability of the approaches, and. by critically analysing the state of the art in FEM updating, this book identifies new research directions.
169.99 In Stock
Finite Element Model Updating Using Computational Intelligence Techniques: Applications to Structural Dynamics

Finite Element Model Updating Using Computational Intelligence Techniques: Applications to Structural Dynamics

by Tshilidzi Marwala
Finite Element Model Updating Using Computational Intelligence Techniques: Applications to Structural Dynamics

Finite Element Model Updating Using Computational Intelligence Techniques: Applications to Structural Dynamics

by Tshilidzi Marwala

Paperback(2010)

$169.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

FEM updating allows FEMs to be tuned better to reflect measured data. It can be conducted using two different statistical frameworks: the maximum likelihood approach and Bayesian approaches. This book applies both strategies to the field of structural mechanics, using vibration data. Computational intelligence techniques including: multi-layer perceptron neural networks; particle swarm and GA-based optimization methods; simulated annealing; response surface methods; and expectation maximization algorithms, are proposed to facilitate the updating process. Based on these methods, the most appropriate updated FEM is selected, a problem that traditional FEM updating has not addressed. This is found to incorporate engineering judgment into finite elements through the formulations of prior distributions. Case studies, demonstrating the principles test the viability of the approaches, and. by critically analysing the state of the art in FEM updating, this book identifies new research directions.

Product Details

ISBN-13: 9781447157168
Publisher: Springer London
Publication date: 11/03/2014
Edition description: 2010
Pages: 250
Product dimensions: 6.10(w) x 9.25(h) x 0.02(d)

About the Author

Tshilidzi Marwala is the Executive Dean of the Faculty of Engineering and the Built Environment at the University of Johannesburg. He was previously the Adhominem Professor of Electrical Engineering as well as the Carl and Emily Fuchs Chair of Systems and Control Engineering at the University of the Witwatersrand. He is a Fellow of the Royal Society of Arts as well as the Royal Statistical Society. He holds a PhD in Engineering from the University of Cambridge and a PLD from Harvard University in the USA. He was a post-doctoral research associate at Imperial College working in the general area of computational intelligence. He has been a visiting fellow at Harvard University and Cambridge University. His research interests include the application of computational intelligence to mechanical. civil, aerospace and biomedical engineering. Professor Marwala has made fundamental contributions to engineering including the development of the concept of pseudo-modal energies and the development of Bayesian framework for solving engineering problems such as finite element model updating. He has supervised 40 masters and PhD students many of whom have proceeded to distinguish themselves at universities such as Harvard, Oxford and Cambridge. He has published over 200 papers in journals such as the American Institute of Aeronautics and Astronautics Journal, proceedings and book chapters. He has published two books: Computational Intelligence for Modelling Complex Systems published by Research India Publications as well as Computational Intelligence for Missing Data Imputation, Estimation, and Management: Knowledge Optimization Techniques published by the IGI Global Publications (New York). His work has appeared in prestigious publications such as New Scientist. He is a senior member of the IEEE.

Table of Contents

to Finite-element-model Updating.- Finite-element-model Updating Using Nelder–Mead Simplex and Newton Broyden–Fletcher–Goldfarb–Shanno Methods.- Finite-element-model Updating Using Genetic Algorithm.- Finite-element-model Updating Using Particle-swarm Optimization.- Finite-element-model Updating Using Simulated Annealing.- Finite-element-model Updating Using the Response-surface Method.- Finite-element-model Updating Using a Hybrid Optimization Method.- Finite-element-model Updating Using a Multi-criteria Method.- Finite-element-model Updating Using Artificial Neural Networks.- Finite-element-model Updating Using a Bayesian Approach.- Finite-element-model Updating Applied in Damage Detection.- Conclusions and Emerging State-of-the-art.
From the B&N Reads Blog

Customer Reviews