Fluid Mechanics: A Geometrical Point of View
Fluid Mechanics: A Geometrical Point of View emphasizes general principles of physics illustrated by simple examples in fluid mechanics. Advanced mathematics (e.g., Riemannian geometry and Lie groups) commonly used in other parts of theoretical physics (e.g. General Relativity or High Energy Physics) are explained and applied to fluid mechanics. This follows on from the author's book Advanced Mechanics (Oxford University Press, 2013).

After introducing the fundamental equations (Euler and Navier-Stokes), the book provides particular cases: ideal and viscous flows, shocks, boundary layers, instabilities, and transients. A restrained look at integrable systems (KdV) leads into a formulation of an ideal fluid as a hamiltonian system. Arnold's deep idea, that the instability of a fluid can be understood using the curvature of the diffeomorphism group, will be explained. Leray's work on regularity of Navier-Stokes solutions, and the modern developments arising from it, will be explained in language for physicists.

Although this is a book on theoretical physics, readers will learn basic numerical methods: spectral and finite difference methods, geometric integrators for ordinary differential equations. Readers will take a deep dive into chaotic dynamics, using the Smale horse shoe as an example. Aref's work on chaotic advection is explained. The book concludes with a self-contained introduction to renormalization, an idea from high energy physics which is expected to be useful in developing a theory of turbulence.
1133670569
Fluid Mechanics: A Geometrical Point of View
Fluid Mechanics: A Geometrical Point of View emphasizes general principles of physics illustrated by simple examples in fluid mechanics. Advanced mathematics (e.g., Riemannian geometry and Lie groups) commonly used in other parts of theoretical physics (e.g. General Relativity or High Energy Physics) are explained and applied to fluid mechanics. This follows on from the author's book Advanced Mechanics (Oxford University Press, 2013).

After introducing the fundamental equations (Euler and Navier-Stokes), the book provides particular cases: ideal and viscous flows, shocks, boundary layers, instabilities, and transients. A restrained look at integrable systems (KdV) leads into a formulation of an ideal fluid as a hamiltonian system. Arnold's deep idea, that the instability of a fluid can be understood using the curvature of the diffeomorphism group, will be explained. Leray's work on regularity of Navier-Stokes solutions, and the modern developments arising from it, will be explained in language for physicists.

Although this is a book on theoretical physics, readers will learn basic numerical methods: spectral and finite difference methods, geometric integrators for ordinary differential equations. Readers will take a deep dive into chaotic dynamics, using the Smale horse shoe as an example. Aref's work on chaotic advection is explained. The book concludes with a self-contained introduction to renormalization, an idea from high energy physics which is expected to be useful in developing a theory of turbulence.
43.99 In Stock
Fluid Mechanics: A Geometrical Point of View

Fluid Mechanics: A Geometrical Point of View

by S. G. Rajeev
Fluid Mechanics: A Geometrical Point of View

Fluid Mechanics: A Geometrical Point of View

by S. G. Rajeev

Paperback

$43.99 
  • SHIP THIS ITEM
    In stock. Ships in 3-7 days. Typically arrives in 3 weeks.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Fluid Mechanics: A Geometrical Point of View emphasizes general principles of physics illustrated by simple examples in fluid mechanics. Advanced mathematics (e.g., Riemannian geometry and Lie groups) commonly used in other parts of theoretical physics (e.g. General Relativity or High Energy Physics) are explained and applied to fluid mechanics. This follows on from the author's book Advanced Mechanics (Oxford University Press, 2013).

After introducing the fundamental equations (Euler and Navier-Stokes), the book provides particular cases: ideal and viscous flows, shocks, boundary layers, instabilities, and transients. A restrained look at integrable systems (KdV) leads into a formulation of an ideal fluid as a hamiltonian system. Arnold's deep idea, that the instability of a fluid can be understood using the curvature of the diffeomorphism group, will be explained. Leray's work on regularity of Navier-Stokes solutions, and the modern developments arising from it, will be explained in language for physicists.

Although this is a book on theoretical physics, readers will learn basic numerical methods: spectral and finite difference methods, geometric integrators for ordinary differential equations. Readers will take a deep dive into chaotic dynamics, using the Smale horse shoe as an example. Aref's work on chaotic advection is explained. The book concludes with a self-contained introduction to renormalization, an idea from high energy physics which is expected to be useful in developing a theory of turbulence.

Product Details

ISBN-13: 9780198805038
Publisher: Oxford University Press
Publication date: 10/30/2018
Pages: 272
Product dimensions: 6.70(w) x 9.60(h) x 0.50(d)

About the Author

S. G. Rajeev, Professor of Physics and Mathematics, University of Rochester

S. G. Rajeev was born in Trivandrum, India. He has a B.Sc. degree from the University of Kerala and a Ph. D. from Syracuse University. After a stint as a Postdoctoral Fellow at MIT, he has been on the faculty at the University of Rochester, where he is a Professor of Physics and of Mathematics. He has done research on several topics in high energy physics and quantum gravity: soliton models for hadrons, string theory, renormalization, quantum field theory, and Yang-Mills theories — but fluid mechanics was his first love.

Table of Contents

1. Vector Fields2. Euler's Equations3. The Navier-Stokes Equations4. Ideal Fluid Flows5. Viscous Flows6. Shocks7. Boundary Layers8. Instabilities9. Integrable Models10. Hamiltonian Systems Based on a Lie Algebra11. Curvature and Instability12. Singularities13. Spectral Methods14. Finite Difference Methods15. Geometric Integrators
From the B&N Reads Blog

Customer Reviews