Free Energy and Self-Interacting Particles
This book examines a system of parabolic-elliptic partial differential eq- tions proposed in mathematical biology, statistical mechanics, and chemical kinetics. In the context of biology, this system of equations describes the chemotactic feature of cellular slime molds and also the capillary formation of blood vessels in angiogenesis. There are several methods to derive this system. One is the biased random walk of the individual, and another is the reinforced random walk of one particle modelled on the cellular automaton. In the context of statistical mechanics or chemical kinetics, this system of equations describes the motion of a mean field of many particles, interacting under the gravitational inner force or the chemical reaction, and therefore this system is af?liated with a hierarchy of equations: Langevin, Fokker–Planck, Liouville–Gel’fand, and the gradient flow. All of the equations are subject to the second law of thermodynamics — the decrease of free energy. The mat- matical principle of this hierarchy, on the other hand, is referred to as the qu- tized blowup mechanism; the blowup solution of our system develops delta function singularities with the quantized mass.
1007035816
Free Energy and Self-Interacting Particles
This book examines a system of parabolic-elliptic partial differential eq- tions proposed in mathematical biology, statistical mechanics, and chemical kinetics. In the context of biology, this system of equations describes the chemotactic feature of cellular slime molds and also the capillary formation of blood vessels in angiogenesis. There are several methods to derive this system. One is the biased random walk of the individual, and another is the reinforced random walk of one particle modelled on the cellular automaton. In the context of statistical mechanics or chemical kinetics, this system of equations describes the motion of a mean field of many particles, interacting under the gravitational inner force or the chemical reaction, and therefore this system is af?liated with a hierarchy of equations: Langevin, Fokker–Planck, Liouville–Gel’fand, and the gradient flow. All of the equations are subject to the second law of thermodynamics — the decrease of free energy. The mat- matical principle of this hierarchy, on the other hand, is referred to as the qu- tized blowup mechanism; the blowup solution of our system develops delta function singularities with the quantized mass.
109.99 In Stock
Free Energy and Self-Interacting Particles

Free Energy and Self-Interacting Particles

by Takashi Suzuki
Free Energy and Self-Interacting Particles

Free Energy and Self-Interacting Particles

by Takashi Suzuki

Hardcover(2005)

$109.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This book examines a system of parabolic-elliptic partial differential eq- tions proposed in mathematical biology, statistical mechanics, and chemical kinetics. In the context of biology, this system of equations describes the chemotactic feature of cellular slime molds and also the capillary formation of blood vessels in angiogenesis. There are several methods to derive this system. One is the biased random walk of the individual, and another is the reinforced random walk of one particle modelled on the cellular automaton. In the context of statistical mechanics or chemical kinetics, this system of equations describes the motion of a mean field of many particles, interacting under the gravitational inner force or the chemical reaction, and therefore this system is af?liated with a hierarchy of equations: Langevin, Fokker–Planck, Liouville–Gel’fand, and the gradient flow. All of the equations are subject to the second law of thermodynamics — the decrease of free energy. The mat- matical principle of this hierarchy, on the other hand, is referred to as the qu- tized blowup mechanism; the blowup solution of our system develops delta function singularities with the quantized mass.

Product Details

ISBN-13: 9780817643027
Publisher: Birkhäuser Boston
Publication date: 05/05/2005
Series: Progress in Nonlinear Differential Equations and Their Applications , #62
Edition description: 2005
Pages: 370
Product dimensions: 6.10(w) x 9.25(h) x 0.04(d)

Table of Contents

Summary.- Background.- Fundamental Theorem.- Trudinger-Moser Inequality.- The Green’s Function.- Equilibrium States.- Blowup Analysis for Stationary Solutions.- Multiple Existence.- Dynamical Equivalence.- Formation of Collapses.- Finiteness of Blowup Points.- Concentration Lemma.- Weak Solution.- Hyperparabolicity.- Quantized Blowup Mechanism.- Theory of Dual Variation.
From the B&N Reads Blog

Customer Reviews