Galois Representations and (Phi, Gamma)-Modules
Understanding Galois representations is one of the central goals of number theory. Around 1990, Fontaine devised a strategy to compare such p-adic Galois representations to seemingly much simpler objects of (semi)linear algebra, the so-called etale (phi, gamma)-modules. This book is the first to provide a detailed and self-contained introduction to this theory. The close connection between the absolute Galois groups of local number fields and local function fields in positive characteristic is established using the recent theory of perfectoid fields and the tilting correspondence. The author works in the general framework of Lubin–Tate extensions of local number fields, and provides an introduction to Lubin–Tate formal groups and to the formalism of ramified Witt vectors. This book will allow graduate students to acquire the necessary basis for solving a research problem in this area, while also offering researchers many of the basic results in one convenient location.
1133678121
Galois Representations and (Phi, Gamma)-Modules
Understanding Galois representations is one of the central goals of number theory. Around 1990, Fontaine devised a strategy to compare such p-adic Galois representations to seemingly much simpler objects of (semi)linear algebra, the so-called etale (phi, gamma)-modules. This book is the first to provide a detailed and self-contained introduction to this theory. The close connection between the absolute Galois groups of local number fields and local function fields in positive characteristic is established using the recent theory of perfectoid fields and the tilting correspondence. The author works in the general framework of Lubin–Tate extensions of local number fields, and provides an introduction to Lubin–Tate formal groups and to the formalism of ramified Witt vectors. This book will allow graduate students to acquire the necessary basis for solving a research problem in this area, while also offering researchers many of the basic results in one convenient location.
72.0 In Stock
Galois Representations and (Phi, Gamma)-Modules

Galois Representations and (Phi, Gamma)-Modules

by Peter Schneider
Galois Representations and (Phi, Gamma)-Modules

Galois Representations and (Phi, Gamma)-Modules

by Peter Schneider

Hardcover

$72.00 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Understanding Galois representations is one of the central goals of number theory. Around 1990, Fontaine devised a strategy to compare such p-adic Galois representations to seemingly much simpler objects of (semi)linear algebra, the so-called etale (phi, gamma)-modules. This book is the first to provide a detailed and self-contained introduction to this theory. The close connection between the absolute Galois groups of local number fields and local function fields in positive characteristic is established using the recent theory of perfectoid fields and the tilting correspondence. The author works in the general framework of Lubin–Tate extensions of local number fields, and provides an introduction to Lubin–Tate formal groups and to the formalism of ramified Witt vectors. This book will allow graduate students to acquire the necessary basis for solving a research problem in this area, while also offering researchers many of the basic results in one convenient location.

Product Details

ISBN-13: 9781107188587
Publisher: Cambridge University Press
Publication date: 04/20/2017
Series: Cambridge Studies in Advanced Mathematics , #164
Pages: 156
Product dimensions: 6.22(w) x 9.25(h) x 0.55(d)

About the Author

Peter Schneider is a professor in the Mathematical Institute at the University of Münster. His research interests lie within the Langlands program, which relates Galois representations to representations of p-adic reductive groups, as well as in number theory and in representation theory. He is the author of Nonarchimedean Functional Analysis (2001), p-Adic Lie Groups (2011) and Modular Representation Theory of Finite Groups (2012), and he is a member of the National German Academy of Science Leopoldina and of the Academia Europaea.

Table of Contents

Preface; Overview; 1. Relevant constructions; 2. (ϕL, ΓL-modules); 3. An equivalence of categories; 4. Further topics; References; Notation; Subject index.
From the B&N Reads Blog

Customer Reviews