Geometric Control of Fracture and Topological Metamaterials
This thesis reports a rare combination of experiment and theory on the role of geometry in materials science. It is built on two significant findings: that curvature can be used to guide crack paths in a predictive way, and that protected topological order can exist in amorphous materials. In each, the underlying geometry controls the elastic behavior of quasi-2D materials, enabling the control of crack propagation in elastic sheets and the control of unidirectional waves traveling at the boundary of metamaterials. The thesis examines the consequences of this geometric control in a range of materials spanning many orders of magnitude in length scale, from amorphous macroscopic networks and elastic continua to nanoscale lattices.

1134770338
Geometric Control of Fracture and Topological Metamaterials
This thesis reports a rare combination of experiment and theory on the role of geometry in materials science. It is built on two significant findings: that curvature can be used to guide crack paths in a predictive way, and that protected topological order can exist in amorphous materials. In each, the underlying geometry controls the elastic behavior of quasi-2D materials, enabling the control of crack propagation in elastic sheets and the control of unidirectional waves traveling at the boundary of metamaterials. The thesis examines the consequences of this geometric control in a range of materials spanning many orders of magnitude in length scale, from amorphous macroscopic networks and elastic continua to nanoscale lattices.

109.99 In Stock
Geometric Control of Fracture and Topological Metamaterials

Geometric Control of Fracture and Topological Metamaterials

by Noah Mitchell
Geometric Control of Fracture and Topological Metamaterials

Geometric Control of Fracture and Topological Metamaterials

by Noah Mitchell

Hardcover(1st ed. 2020)

$109.99 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This thesis reports a rare combination of experiment and theory on the role of geometry in materials science. It is built on two significant findings: that curvature can be used to guide crack paths in a predictive way, and that protected topological order can exist in amorphous materials. In each, the underlying geometry controls the elastic behavior of quasi-2D materials, enabling the control of crack propagation in elastic sheets and the control of unidirectional waves traveling at the boundary of metamaterials. The thesis examines the consequences of this geometric control in a range of materials spanning many orders of magnitude in length scale, from amorphous macroscopic networks and elastic continua to nanoscale lattices.


Product Details

ISBN-13: 9783030363604
Publisher: Springer International Publishing
Publication date: 01/02/2020
Series: Springer Theses
Edition description: 1st ed. 2020
Pages: 121
Product dimensions: 6.10(w) x 9.25(h) x (d)

About the Author

Noah Mitchell is a postdoctoral fellow at the Kavli Institute for Theoretical Physics at the University of California, Santa Barbara. He received his PhD from the University of Chicago in 2018.

Table of Contents

Chapter1: Introduction.- PartI: Gaussian Curvature as a Guide for Material Failure.- Chapter2: Fracture in sheets draped on curved surfaces.- Chapter3: Conforming nanoparticle sheets to surfaces with gaussian curvature.- PartII: Topological mechanics in gyroscopic metamaterials.- Chapter4: Realization of a topological phase transition in a gyroscopic lattice.- Chapter5: Tunable band topology in gyroscopic lattices.- Chapter6: Topological insulators constructed from random point sets.- Chapter7: Conclusions and outlook.
From the B&N Reads Blog

Customer Reviews