Geometrical Methods in Variational Problems

This self-contained monograph presents methods for the investigation of nonlinear variational problems. These methods are based on geometric and topological ideas such as topological index, degree of a mapping, Morse-Conley index, Euler characteristics, deformation invariant, homotopic invariant, and the Lusternik-Shnirelman category. Attention is also given to applications in optimisation, mathematical physics, control, and numerical methods.

Audience: This volume will be of interest to specialists in functional analysis and its applications, and can also be recommended as a text for graduate and postgraduate-level courses in these fields.

1117771407
Geometrical Methods in Variational Problems

This self-contained monograph presents methods for the investigation of nonlinear variational problems. These methods are based on geometric and topological ideas such as topological index, degree of a mapping, Morse-Conley index, Euler characteristics, deformation invariant, homotopic invariant, and the Lusternik-Shnirelman category. Attention is also given to applications in optimisation, mathematical physics, control, and numerical methods.

Audience: This volume will be of interest to specialists in functional analysis and its applications, and can also be recommended as a text for graduate and postgraduate-level courses in these fields.

109.99 In Stock
Geometrical Methods in Variational Problems

Geometrical Methods in Variational Problems

Geometrical Methods in Variational Problems

Geometrical Methods in Variational Problems

Paperback(Softcover reprint of the original 1st ed. 1999)

$109.99 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This self-contained monograph presents methods for the investigation of nonlinear variational problems. These methods are based on geometric and topological ideas such as topological index, degree of a mapping, Morse-Conley index, Euler characteristics, deformation invariant, homotopic invariant, and the Lusternik-Shnirelman category. Attention is also given to applications in optimisation, mathematical physics, control, and numerical methods.

Audience: This volume will be of interest to specialists in functional analysis and its applications, and can also be recommended as a text for graduate and postgraduate-level courses in these fields.


Product Details

ISBN-13: 9789401059558
Publisher: Springer Netherlands
Publication date: 10/13/2012
Series: Mathematics and Its Applications , #485
Edition description: Softcover reprint of the original 1st ed. 1999
Pages: 543
Product dimensions: 6.30(w) x 9.45(h) x 0.04(d)

Table of Contents

1 Preliminaries.- 1.1 Metric and Normed Spaces.- 1.2 Compactness.- 1.3 Linear Functional and Dual Spaces.- 1.4 Linear Operators.- 1.5 Nonlinear Operators and Functionals.- 1.6 Contraction Mapping Principle, Implicit Function Theorem, and Differential Equations on a Banach Space.- 2 Minimization of Nonlinear Functionals.- 2.1 Extrema of Smooth Functionals.- 2.2 Extremum of Lipschitzian and Convex Functionals.- 2.3 Weierstass Theorems.- 2.4 Monotonicity.- 2.5 Variational Principles.- 2.6 Additional Remarks.- 3 Homotopic Methods in Variational Problems.- 3.1 Deformations of Functionals on Hilbert Spaces.- 3.2 Deformations of Functionals on Banach Spaces.- 3.3 Global Deformations of Functionals.- 3.4 Deformation of Problems of the Calculus of Variations.- 3.5 Deformations of Lipschitzian Functions.- 3.6 Global Deformations of Lipschitzian Functions.- 3.7 Deformations of Mathematical Programming Problems.- 3.8 Deformations of Lipschitzian Functionals.- 3.9 Additional Remarks.- 4 Topological Characteristics of Extremals of Variational Problems.- 4.1 Smooth Manifolds and Differential Forms.- 4.2 Degree of Mapping.- 4.3 Rotation of Vector Fields in Finite-Dimensional Spaces.- 4.4 Vector Fields in Infinite-Dimensional Spaces.- 4.5 Computation of the Topological Index.- 4.6 Topological Index of Zero of an Isolated Minimum.- 4.7 Euler Characteristic and the Topological Index of an Isolated Critical Set.- 4.8 Topological Index of Extremals of Problems of the Calculus of Variations.- 4.9 Topological Index of Optimal Controls.- 4.10 Topological Characteristic s of Critical Points of Nonsmooth Functionals.- 4.11 Additional Remarks.- 5 Applications.- 5.1 Existence Theorems.- 5.2 Bounds of the Number of Solutions to Variational Problems.- 5.3 Applications of the Homotopic Method.- 5.4 Study of Degenerate Extremals.- 5.5 Morse Lemmas.- 5.6 Well-Posedness of Variational Problems. Ulam Problem.- 5.7 Gradient Procedures.- 5.8 Bifurcation of Extremals of Variational Problems.- 5.9 Eigenvalues of Potential Operators.- 5.10 Additional Remarks.- Bibliographical Comments.- References.
From the B&N Reads Blog

Customer Reviews