Geometry of Geodesics on Hyperbolic Manifolds
The presented work is a research in the field of the geometry of two-dimensional hyperbolic (equipped with a metric of constant negative curvature) manifolds. We introduce a new method (a way) to describe the global behavior of geodesics on hyperbolic manifolds of dimension two. We use this construction (method of colour multilaterals ), to investigate typical behavior of geodesics on a arbitrary hyperbolic surfaces of signature . Applications and future direction are discussed. For this purpose, with the help of proposed practical approach at first:1) we obtain a complete classification of all possible geodesics on the simplest hyperbolic 2-manifolds (hyperbolic horn; hyperbolic cylinder; parabolic horn (cusp)); 2) describe the behavior of geodesics on the following cases: a) on a genus two hyperbolic surface (double-glued from two pair of pants); b) we investigate the typical behavior of geodesic on a compact closed hyperbolic surface without boundary (general case); c) on a hyperbolic surface of genus g and with n boundary components; d) on a hyperbolic 1- punctured torus; e) on a generalized hyperbolic pants; f) on a hyperbolic thrice-punctured sphere; in general case: g) for any (oriented) punctured hyperbolic surface M of genus g and k punctures; in the most general case: h) behavior of geodesic on any hyperbolic surface of signature (with genus g, n boundary components and k cusps).
1148017292
Geometry of Geodesics on Hyperbolic Manifolds
The presented work is a research in the field of the geometry of two-dimensional hyperbolic (equipped with a metric of constant negative curvature) manifolds. We introduce a new method (a way) to describe the global behavior of geodesics on hyperbolic manifolds of dimension two. We use this construction (method of colour multilaterals ), to investigate typical behavior of geodesics on a arbitrary hyperbolic surfaces of signature . Applications and future direction are discussed. For this purpose, with the help of proposed practical approach at first:1) we obtain a complete classification of all possible geodesics on the simplest hyperbolic 2-manifolds (hyperbolic horn; hyperbolic cylinder; parabolic horn (cusp)); 2) describe the behavior of geodesics on the following cases: a) on a genus two hyperbolic surface (double-glued from two pair of pants); b) we investigate the typical behavior of geodesic on a compact closed hyperbolic surface without boundary (general case); c) on a hyperbolic surface of genus g and with n boundary components; d) on a hyperbolic 1- punctured torus; e) on a generalized hyperbolic pants; f) on a hyperbolic thrice-punctured sphere; in general case: g) for any (oriented) punctured hyperbolic surface M of genus g and k punctures; in the most general case: h) behavior of geodesic on any hyperbolic surface of signature (with genus g, n boundary components and k cusps).
51.0 In Stock
Geometry of Geodesics on Hyperbolic Manifolds

Geometry of Geodesics on Hyperbolic Manifolds

by Vladimir Balkan
Geometry of Geodesics on Hyperbolic Manifolds

Geometry of Geodesics on Hyperbolic Manifolds

by Vladimir Balkan

Paperback

$51.00 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

The presented work is a research in the field of the geometry of two-dimensional hyperbolic (equipped with a metric of constant negative curvature) manifolds. We introduce a new method (a way) to describe the global behavior of geodesics on hyperbolic manifolds of dimension two. We use this construction (method of colour multilaterals ), to investigate typical behavior of geodesics on a arbitrary hyperbolic surfaces of signature . Applications and future direction are discussed. For this purpose, with the help of proposed practical approach at first:1) we obtain a complete classification of all possible geodesics on the simplest hyperbolic 2-manifolds (hyperbolic horn; hyperbolic cylinder; parabolic horn (cusp)); 2) describe the behavior of geodesics on the following cases: a) on a genus two hyperbolic surface (double-glued from two pair of pants); b) we investigate the typical behavior of geodesic on a compact closed hyperbolic surface without boundary (general case); c) on a hyperbolic surface of genus g and with n boundary components; d) on a hyperbolic 1- punctured torus; e) on a generalized hyperbolic pants; f) on a hyperbolic thrice-punctured sphere; in general case: g) for any (oriented) punctured hyperbolic surface M of genus g and k punctures; in the most general case: h) behavior of geodesic on any hyperbolic surface of signature (with genus g, n boundary components and k cusps).

Product Details

ISBN-13: 9786207841769
Publisher: LAP Lambert Academic Publishing
Publication date: 07/14/2025
Pages: 64
Product dimensions: 6.00(w) x 9.00(h) x 0.15(d)
From the B&N Reads Blog

Customer Reviews