Geometry: Euclid and Beyond
In recent years, I have been teaching a junior-senior-level course on the classi­ cal geometries. This book has grown out of that teaching experience. I assume only high-school geometry and some abstract algebra. The course begins in Chapter 1 with a critical examination of Euclid's Elements. Students are expected to read concurrently Books I-IV of Euclid's text, which must be obtained sepa­ rately. The remainder of the book is an exploration of questions that arise natu­ rally from this reading, together with their modern answers. To shore up the foundations we use Hilbert's axioms. The Cartesian plane over a field provides an analytic model of the theory, and conversely, we see that one can introduce coordinates into an abstract geometry. The theory of area is analyzed by cutting figures into triangles. The algebra of field extensions provides a method for deciding which geometrical constructions are possible. The investigation of the parallel postulate leads to the various non-Euclidean geometries. And in the last chapter we provide what is missing from Euclid's treatment of the five Platonic solids in Book XIII of the Elements. For a one-semester course such as I teach, Chapters 1 and 2 form the core material, which takes six to eight weeks.
1101681989
Geometry: Euclid and Beyond
In recent years, I have been teaching a junior-senior-level course on the classi­ cal geometries. This book has grown out of that teaching experience. I assume only high-school geometry and some abstract algebra. The course begins in Chapter 1 with a critical examination of Euclid's Elements. Students are expected to read concurrently Books I-IV of Euclid's text, which must be obtained sepa­ rately. The remainder of the book is an exploration of questions that arise natu­ rally from this reading, together with their modern answers. To shore up the foundations we use Hilbert's axioms. The Cartesian plane over a field provides an analytic model of the theory, and conversely, we see that one can introduce coordinates into an abstract geometry. The theory of area is analyzed by cutting figures into triangles. The algebra of field extensions provides a method for deciding which geometrical constructions are possible. The investigation of the parallel postulate leads to the various non-Euclidean geometries. And in the last chapter we provide what is missing from Euclid's treatment of the five Platonic solids in Book XIII of the Elements. For a one-semester course such as I teach, Chapters 1 and 2 form the core material, which takes six to eight weeks.
59.99 In Stock
Geometry: Euclid and Beyond

Geometry: Euclid and Beyond

by Robin Hartshorne
Geometry: Euclid and Beyond

Geometry: Euclid and Beyond

by Robin Hartshorne

Paperback(2000)

$59.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

In recent years, I have been teaching a junior-senior-level course on the classi­ cal geometries. This book has grown out of that teaching experience. I assume only high-school geometry and some abstract algebra. The course begins in Chapter 1 with a critical examination of Euclid's Elements. Students are expected to read concurrently Books I-IV of Euclid's text, which must be obtained sepa­ rately. The remainder of the book is an exploration of questions that arise natu­ rally from this reading, together with their modern answers. To shore up the foundations we use Hilbert's axioms. The Cartesian plane over a field provides an analytic model of the theory, and conversely, we see that one can introduce coordinates into an abstract geometry. The theory of area is analyzed by cutting figures into triangles. The algebra of field extensions provides a method for deciding which geometrical constructions are possible. The investigation of the parallel postulate leads to the various non-Euclidean geometries. And in the last chapter we provide what is missing from Euclid's treatment of the five Platonic solids in Book XIII of the Elements. For a one-semester course such as I teach, Chapters 1 and 2 form the core material, which takes six to eight weeks.

Product Details

ISBN-13: 9781441931450
Publisher: Springer New York
Publication date: 12/15/2010
Series: Undergraduate Texts in Mathematics
Edition description: 2000
Pages: 528
Product dimensions: 6.70(w) x 9.80(h) x 1.30(d)

Table of Contents

1. Euclid’s Geometry.- 2. Hilbert’s Axioms.- 3. Geometry over Fields.- 4. Segment Arithmetic.- 5. Area.- 6. Construction Problems and Field Extensions.- 7. Non-Euclidean Geometry.- 8. Polyhedra.- Appendix: Brief Euclid.- Notes.- References.- List of Axioms.- Index of Euclid’s Propositions.
From the B&N Reads Blog

Customer Reviews