Getting Started with Business Analytics: Insightful Decision-Making
Assuming no prior knowledge or technical skills, Getting Started with Business Analytics: Insightful Decision-Making explores the contents, capabilities, and applications of business analytics. It bridges the worlds of business and statistics and describes business analytics from a non-commercial standpoint. The authors demystify the main concepts and terminologies and give many examples of real-world applications.

The first part of the book introduces business data and recent technologies that have promoted fact-based decision-making. The authors look at how business intelligence differs from business analytics. They also discuss the main components of a business analytics application and the various requirements for integrating business with analytics.

The second part presents the technologies underlying business analytics: data mining and data analytics. The book helps you understand the key concepts and ideas behind data mining and shows how data mining has expanded into data analytics when considering new types of data such as network and text data.

The third part explores business analytics in depth, covering customer, social, and operational analytics. Each chapter in this part incorporates hands-on projects based on publicly available data.

Helping you make sound decisions based on hard data, this self-contained guide provides an integrated framework for data mining in business analytics. It takes you on a journey through this data-rich world, showing you how to deploy business analytics solutions in your organization.

You can check out the book's website here.

1113750573
Getting Started with Business Analytics: Insightful Decision-Making
Assuming no prior knowledge or technical skills, Getting Started with Business Analytics: Insightful Decision-Making explores the contents, capabilities, and applications of business analytics. It bridges the worlds of business and statistics and describes business analytics from a non-commercial standpoint. The authors demystify the main concepts and terminologies and give many examples of real-world applications.

The first part of the book introduces business data and recent technologies that have promoted fact-based decision-making. The authors look at how business intelligence differs from business analytics. They also discuss the main components of a business analytics application and the various requirements for integrating business with analytics.

The second part presents the technologies underlying business analytics: data mining and data analytics. The book helps you understand the key concepts and ideas behind data mining and shows how data mining has expanded into data analytics when considering new types of data such as network and text data.

The third part explores business analytics in depth, covering customer, social, and operational analytics. Each chapter in this part incorporates hands-on projects based on publicly available data.

Helping you make sound decisions based on hard data, this self-contained guide provides an integrated framework for data mining in business analytics. It takes you on a journey through this data-rich world, showing you how to deploy business analytics solutions in your organization.

You can check out the book's website here.

77.99 In Stock
Getting Started with Business Analytics: Insightful Decision-Making

Getting Started with Business Analytics: Insightful Decision-Making

by David Roi Hardoon, Galit Shmueli
Getting Started with Business Analytics: Insightful Decision-Making

Getting Started with Business Analytics: Insightful Decision-Making

by David Roi Hardoon, Galit Shmueli

Hardcover(New Edition)

$77.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Assuming no prior knowledge or technical skills, Getting Started with Business Analytics: Insightful Decision-Making explores the contents, capabilities, and applications of business analytics. It bridges the worlds of business and statistics and describes business analytics from a non-commercial standpoint. The authors demystify the main concepts and terminologies and give many examples of real-world applications.

The first part of the book introduces business data and recent technologies that have promoted fact-based decision-making. The authors look at how business intelligence differs from business analytics. They also discuss the main components of a business analytics application and the various requirements for integrating business with analytics.

The second part presents the technologies underlying business analytics: data mining and data analytics. The book helps you understand the key concepts and ideas behind data mining and shows how data mining has expanded into data analytics when considering new types of data such as network and text data.

The third part explores business analytics in depth, covering customer, social, and operational analytics. Each chapter in this part incorporates hands-on projects based on publicly available data.

Helping you make sound decisions based on hard data, this self-contained guide provides an integrated framework for data mining in business analytics. It takes you on a journey through this data-rich world, showing you how to deploy business analytics solutions in your organization.

You can check out the book's website here.


Product Details

ISBN-13: 9781439896532
Publisher: Taylor & Francis
Publication date: 03/26/2013
Edition description: New Edition
Pages: 190
Product dimensions: 7.10(w) x 10.00(h) x 0.70(d)

About the Author

David R. Hardoon is the Senior Advisor for Data and Artificial Intelligence at UnionBank Philippines, Chair of Data Committee at Aboitiz Group and acting in capacity of Managing Director for Aboitiz Data Innovation. Concurrently David is an external advisor to Singapore's Corrupt Investigation Practices Bureau (CPIB) in the capacity of Senior Advisor (Artificial Intelligence) and to Singapore's Central Provident Fund Board (CPF) in the capacity of Senior Advisor (Data Science).

David has extensive exposure and experience in both industry and academia and he has consistently applied advanced technology with an analytical mindset to shape and deliver new innovation. David holds a PhD in Computer Science in the field of Machine Learning from the University of Southampton and graduated from Royal Holloway, University of London with First Class Honors  B.Sc. in Computer Science and Artificial Intelligence.

Galit Shmueli is Distinguished Professor at the Institute of Service Science, National Tsing Hua University, Taiwan. Between 2011-2014 she was the SRITNE Chaired Professor of Data Analytics and Associate Professor of Statistics & Information Systems at the Indian School of Business, and earlier Associate Professor of Statistics at University of Maryland's Smith School of Business. She is best known for her research and teaching in business analytics, with a focus on statistical and data mining methods for contemporary data and applications in information systems and healthcare.

Dr. Shmueli's research has been published in the statistics, management, information systems, and marketing literature. She authors over seventy journal articles, books, textbooks and book chapters, including the popular textbook Data Mining for Business Intelligence and Practical Time Series Forecasting. Dr. Shmueli is an award-winning teacher and speaker on data analytics.

Table of Contents

Introduction to Business Analytics: The Paradigm Shift. The Business Analytics Cycle. Data Mining and Data Analytics: Data Mining in a Nutshell. From Data Mining to Data Analytics. Business Analytics: Customer Analytics. Social Analytics. Operational Analytics. Bibliography.

What People are Saying About This

From the Publisher

This book offers an introduction to the essence of business analytics, providing a good summary of the analytical solutions employed across these industries today, including an updated vocabulary on new domains such as social media. The reader will appreciate the difference between supervised and unsupervised learning, k-means clustering and regression tree classification. … Getting Started with Business Analytics will simplify, and demystify, the concepts around the "science of data." Looking back at my career in the field of business analytics, I realize that it would have been extremely helpful to have had such a book in hand. It would have provided me with guidance on structuring my analytical solutions and would have inspired me to greater creativity. I hope this book will light the spark of curiosity for a new generation of data scientists.
—Eric Sandosham, Managing Director and Regional Head of Decision Management at Citibank, Asia Pacific 2010–2012

From the B&N Reads Blog

Customer Reviews