Handbook of Superconductivity: Characterization and Applications, Volume Three / Edition 2 available in Hardcover

Handbook of Superconductivity: Characterization and Applications, Volume Three / Edition 2
- ISBN-10:
- 1439817367
- ISBN-13:
- 9781439817360
- Pub. Date:
- 07/05/2022
- Publisher:
- Taylor & Francis

Handbook of Superconductivity: Characterization and Applications, Volume Three / Edition 2
Hardcover
Buy New
$350.00-
SHIP THIS ITEMIn stock. Ships in 3-7 days. Typically arrives in 3 weeks.PICK UP IN STORE
Your local store may have stock of this item.
Available within 2 business hours
Overview
While the first volume covers fundamentals and various classes of materials, the second addresses processing of these into various shapes and configurations needed for applications, and ends with chapters on refrigeration methods necessary to attain the superconducting state and the desired performance. This third volume starts with a wide range of methods permitting one to characterize both the materials and various end products of processing. Subsequently, diverse classes of both large scale and electronic applications are described. Volume 3 ends with a glossary relevant to all three volumes.
Key Features:
- Covers the depth and breadth of the field
- Includes contributions from leading academics and industry professionals across the world
- Provides hands-on familiarity with the characterization methods and offers descriptions of representative examples of practical applications
A comprehensive reference, the handbook is suitable for both graduate students and practitioners in experimental physics, materials science, and multiple engineering disciplines, including electronic and electrical, chemical, mechanical, metallurgy and others.
Product Details
ISBN-13: | 9781439817360 |
---|---|
Publisher: | Taylor & Francis |
Publication date: | 07/05/2022 |
Edition description: | 2nd ed. |
Pages: | 880 |
Product dimensions: | 8.25(w) x 11.00(h) x (d) |
About the Author
Professor David Larbalestier is Krafft Professor of Superconducting Materials at Florida State University and Chief Materials Scientist at the National High Magnetic Field Laboratory. He was for many years Director of the Applied Superconductivity Center, first at the University of Wisconsin in Madison (1991-2006) before moving the Center to the NHMFL at Florida State University, stepping down as Director in 2018. He has been deeply interested in understanding superconducting materials that are or potentially useful as conductors and made major contributions to the understanding and betterment of Nb-Ti alloys, Nb3Sn, YBa2Cu3O7-, Bi2Sr2Ca1Cu2Ox, (Bi,Pb)2Sr2Ca2Cu3Ox, MgB2 and the Fe-based compounds. Fabrication of high field test magnets has always been an interest, starting with the first high field filamentary Nb3Sn magnets while at Rutherford Laboratory and more recently the world’s highest field DC magnet (45.5 T using a 14.5 T REBCO insert inside a 31 T resistive magnet). These works are described in ~490 papers written in partnership with more than 70 PhD students and postdocs, as well as other collaborators. He was elected to the National Academy of Engineering in 2003 and is a Fellow of the APS, IOP, IEEE, MRS and AAAS. He received his B.Sc. (1965) and Ph.D. (1970) degrees from Imperial College at the University of London and taught at the University of Wisconsin in Madison from 1976-2006.
Professor Alex Braginski is retired Director of a former Superconducting Electronics Institute at the Research Center Jülich (FZJ), retired Professor of Physics at the University of Wuppertal, both in Germany, and currently a guest researcher at FZJ. He received his doctoral and D.Sc. degrees in Poland, where in early 1950s he pioneered the development of ferrite technology and subsequently their industrial manufacturing, for which he received a Polish National Prize. He headed the Polfer Research Laboratory there until leaving Poland in 1966. At the Westinghouse R&D Center in Pittsburgh, PA, USA, he then in turn managed magnetics, superconducting materials and superconducting electronics groups until retiring in 1989. Personally contributed there to technology of thin-film Nb3Ge conductors and Josephson junctions (JJs), both A15 and high-Tc, also epitaxial. Invited by FZJ, he joined it and contributed to development of high-Tc JJs and RF SQUIDs. After retiring in 1989, was Vice President R&D at Cardiomag Imaging, Inc. in Schenectady, NY, USA, 2000-2002. Co-edited and co-authored The SQUID Handbook, 2004-2006, several book chapters, and authored or co-authored well over 200 journal publications and 17 patents. He founded and served as Editor of the IEEE CSC Superconductivity News Forum (SNF), 2007-2017. Is Fellow of IEEE and APS, and recipient of the IEEE CSC Award for Continuing and Significant Contributions in the Field of Applied Superconductivity, 2006.