Harmonic Analysis on Symmetric Spaces-Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane / Edition 2

Harmonic Analysis on Symmetric Spaces-Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane / Edition 2

by Audrey Terras
ISBN-10:
1493950134
ISBN-13:
9781493950133
Pub. Date:
08/23/2016
Publisher:
Springer New York
ISBN-10:
1493950134
ISBN-13:
9781493950133
Pub. Date:
08/23/2016
Publisher:
Springer New York
Harmonic Analysis on Symmetric Spaces-Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane / Edition 2

Harmonic Analysis on Symmetric Spaces-Euclidean Space, the Sphere, and the Poincaré Upper Half-Plane / Edition 2

by Audrey Terras
$64.99
Current price is , Original price is $64.99. You
$64.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days. Not Eligible for Free Shipping
  • PICK UP IN STORE

    Your local store may have stock of this item.


Overview

This unique text is an introduction to harmonic analysis on the simplest symmetric spaces, namely Euclidean space, the sphere, and the Poincaré upper half plane. This book is intended for beginning graduate students in mathematics or researchers in physics or engineering. Written with an informal style, the book places an emphasis on motivation, concrete examples, history, and, above all, applications in mathematics, statistics, physics, and engineering.

Many corrections and updates have been incorporated in this new edition. Updates include discussions of P. Sarnak and others' work on quantum chaos, the work of T. Sunada, Marie-France Vignéras, Carolyn Gordon, and others on Mark Kac's question "Can you hear the shape of a drum?", A. Lubotzky, R. Phillips and P. Sarnak's examples of Ramanujan graphs, and, finally, the author's comparisons of continuous theory with the finite analogues.

Topics featured throughout the text include inversion formulas for Fourier transforms, central limit theorems, Poisson's summation formula and applications in crystallography and number theory, applications of spherical harmonic analysis to the hydrogen atom, the Radon transform, non-Euclidean geometry on the Poincaré upper half plane H or unit disc and applications to microwave engineering, fundamental domains in H for discrete groups Γ, tessellations of H from such discrete group actions, automorphic forms, and the Selberg trace formula and its applications in spectral theory as well as number theory.


Product Details

ISBN-13: 9781493950133
Publisher: Springer New York
Publication date: 08/23/2016
Edition description: Softcover reprint of the original 2nd ed. 2013
Pages: 413
Product dimensions: 6.10(w) x 9.25(h) x 0.03(d)

About the Author

Audrey Anne Terras is currently Professor Emerita of Mathematics at the University of California at San Diego.

Table of Contents

Chapter 1 Flat Space. Fourier Analysis on Rsubm..- 1.1 Distributions or Generalized Functions.- 1.2 Fourier Integrals.- 1.3 Fourier Series and the Poisson Summation Formula.- 1.4 Mellin Transforms, Epstein and Dedekind Zeta Functions.- 1.5 Finite Symmetric Spaces, Wavelets, Quasicrystals, Weyl’s Criterion for Uniform Distribution.- Chapter 2 A Compact Symmetric Space—The Sphere.- 2.1 Fourier Analysis on the Sphere.- 2.2 O(3) and Rsub3. The Radon Transform.- Chapter 3 The Poincaré Upper Half-Plane.- 3.1 Hyperbolic Geometry.- 3.2 Harmonic Analysis on H.- 3.3 Fundamental Domains for Discrete Subgroups Γ of G = SL(2, R).- 3.4 Modular of Automorphic Forms—Classical.- 3.5 Automorphic Forms—Not So Classical—Maass Waveforms.- 3.6 Modular Forms and Dirichlet Series. Hecke Theory and Generalizations.- References.- Index.
From the B&N Reads Blog

Customer Reviews