High-Pressure Physics
High-pressure science has undergone a revolution in the last 15 years. The development of intense new x-ray and neutron sources, improved detectors, new instrumentation, greatly increased computation power, and advanced computational algorithms have enabled researchers to determine the behavior of matter at static pressures in excess of 400 GPa. Shock-wave techniques have allowed access to the experimental pressure-temperature range beyond 1 TPa and 10,000 K.

High-Pressure Physics introduces the current state of the art in this field. Based on lectures presented by leading researchers at the 63rd Scottish Universities Summer School in Physics, the book summarizes the latest experimental and theoretical techniques. Highlighting applications in a range of physics disciplines—from novel materials synthesis to planetary interiors—this book cuts across many areas and supplies a solid grounding in high-pressure physics.

Chapters cover a wide array of topics and techniques, including:

  • High-pressure devices
  • The design of pressure cells
  • Electrical transport experiments
  • The fabrication process for customizing diamond anvils
  • Equations of state (EOS) for solids in a range of pressures and temperatures
  • Crystallography, optical spectroscopy, and inelastic x-ray scattering (IXS) techniques
  • Magnetism in solids
  • The internal structure of Earth and other planets
  • Measurement and control of temperature in high-pressure experiments
  • Solid state chemistry and materials research at high pressure
  • Liquids and glasses
  • The study of hydrogen at high density

A resource for graduate students and young researchers, this accessible reference provides an overview of key research areas and applications in high-pressure physics.

1100666517
High-Pressure Physics
High-pressure science has undergone a revolution in the last 15 years. The development of intense new x-ray and neutron sources, improved detectors, new instrumentation, greatly increased computation power, and advanced computational algorithms have enabled researchers to determine the behavior of matter at static pressures in excess of 400 GPa. Shock-wave techniques have allowed access to the experimental pressure-temperature range beyond 1 TPa and 10,000 K.

High-Pressure Physics introduces the current state of the art in this field. Based on lectures presented by leading researchers at the 63rd Scottish Universities Summer School in Physics, the book summarizes the latest experimental and theoretical techniques. Highlighting applications in a range of physics disciplines—from novel materials synthesis to planetary interiors—this book cuts across many areas and supplies a solid grounding in high-pressure physics.

Chapters cover a wide array of topics and techniques, including:

  • High-pressure devices
  • The design of pressure cells
  • Electrical transport experiments
  • The fabrication process for customizing diamond anvils
  • Equations of state (EOS) for solids in a range of pressures and temperatures
  • Crystallography, optical spectroscopy, and inelastic x-ray scattering (IXS) techniques
  • Magnetism in solids
  • The internal structure of Earth and other planets
  • Measurement and control of temperature in high-pressure experiments
  • Solid state chemistry and materials research at high pressure
  • Liquids and glasses
  • The study of hydrogen at high density

A resource for graduate students and young researchers, this accessible reference provides an overview of key research areas and applications in high-pressure physics.

250.0 In Stock
High-Pressure Physics

High-Pressure Physics

by John Loveday
High-Pressure Physics

High-Pressure Physics

by John Loveday

Hardcover

$250.00 
  • SHIP THIS ITEM
    Qualifies for Free Shipping
  • PICK UP IN STORE
    Check Availability at Nearby Stores

Related collections and offers


Overview

High-pressure science has undergone a revolution in the last 15 years. The development of intense new x-ray and neutron sources, improved detectors, new instrumentation, greatly increased computation power, and advanced computational algorithms have enabled researchers to determine the behavior of matter at static pressures in excess of 400 GPa. Shock-wave techniques have allowed access to the experimental pressure-temperature range beyond 1 TPa and 10,000 K.

High-Pressure Physics introduces the current state of the art in this field. Based on lectures presented by leading researchers at the 63rd Scottish Universities Summer School in Physics, the book summarizes the latest experimental and theoretical techniques. Highlighting applications in a range of physics disciplines—from novel materials synthesis to planetary interiors—this book cuts across many areas and supplies a solid grounding in high-pressure physics.

Chapters cover a wide array of topics and techniques, including:

  • High-pressure devices
  • The design of pressure cells
  • Electrical transport experiments
  • The fabrication process for customizing diamond anvils
  • Equations of state (EOS) for solids in a range of pressures and temperatures
  • Crystallography, optical spectroscopy, and inelastic x-ray scattering (IXS) techniques
  • Magnetism in solids
  • The internal structure of Earth and other planets
  • Measurement and control of temperature in high-pressure experiments
  • Solid state chemistry and materials research at high pressure
  • Liquids and glasses
  • The study of hydrogen at high density

A resource for graduate students and young researchers, this accessible reference provides an overview of key research areas and applications in high-pressure physics.


Product Details

ISBN-13: 9781439814284
Publisher: Taylor & Francis
Publication date: 06/06/2012
Series: Scottish Graduate Series , #63
Pages: 342
Product dimensions: 6.30(w) x 9.20(h) x 1.00(d)

Table of Contents

High-Pressure Devices. Instrumentation Development for High-Pressure Research. Electrical Transport Experiments at High Pressure. Advances in Customized Diamond Anvils. Equations of State for Solids in Wide Ranges of Pressure and Temperature. High Pressure Crystallography. Optical Spectroscopy at High Pressure. Inelastic X-ray Scattering. Optical Spectroscopy in the Diamond Anvil Cell. Magnetism and High Pressure. The Deep Earth. Planetary Interiors. Temperature Measurement and Control in High-Pressure Experiments. Solid State and Materials Chemistry at High Pressure. Liquids and Amorphous Materials. Dense Hydrogen.

From the B&N Reads Blog

Customer Reviews