Höhere Mathematik griffbereit: Definitionen Theoreme Beispiele
Dieses Buch stellt die Fortsetzung des Buches "Elementarmathe­ matik - griffbereit" desselben Autors dar. Es umfaßt den gesamten Stoff, der im Grundkurs der höheren Mathematik an den technischen Hochschulen sowie Universitäten gelehrt wird. Das Buch hat eine zweifache Bestimmung. Erstens übermittelt es Auskünfte über sachgemäße Fragen : Was ist ein Vektorprodukt? Wie bestimmt man die Fläche eines Dreh­ körpers? Wie entwickelt man eine Funktion in eine trigonometrische Reihe? usw. Die entsprechenden Definitionen, Theoreme, Regeln und Formeln, begleitet von Beispielen und Hinweisen, findet man schnell. Zu diesem Zweck dient das detaillierte Inhaltsverzeichnis und der aus­ führliche alphabetische Index. Zweitens ist das Buch für eine systematische Lektüre bestimmt. Es beansprucht nicht die Rolle eines Lehrbuches. Beweise werden daher nur in Ausnahmefällen vollständig gegeben. Jedoch kann das Buch als Hilfsmittel für eine erste Auseinandersetzung mit dem Gegenstand dienen. Zu diesem Zweck werden ausführliche Erklärungen der Grund­ begriffe gebracht, so etwa: der Begriff des Skalarprodukts (§ 104), des Grenzwerts (§ 203-206), des Differentials (§ 228-235), der un­ endlichen Reihe (§ 270, 366-370). Zum selben Zweck werden alle Regeln durch zahlreiche Beispiele illustriert, die einen organischen Bestandteil dieses Buches bilden (s. die Paragraphen 50-62, 134, 149, 264-266, 369, 422, 418, 498, usw.). Sie erklären die Anwendung der Regeln, wann eine Regel ihre Gültigkeit verliert, welche Fehler man zu vermeiden hat (§ 290,339,340,379, u. a.).
1117755432
Höhere Mathematik griffbereit: Definitionen Theoreme Beispiele
Dieses Buch stellt die Fortsetzung des Buches "Elementarmathe­ matik - griffbereit" desselben Autors dar. Es umfaßt den gesamten Stoff, der im Grundkurs der höheren Mathematik an den technischen Hochschulen sowie Universitäten gelehrt wird. Das Buch hat eine zweifache Bestimmung. Erstens übermittelt es Auskünfte über sachgemäße Fragen : Was ist ein Vektorprodukt? Wie bestimmt man die Fläche eines Dreh­ körpers? Wie entwickelt man eine Funktion in eine trigonometrische Reihe? usw. Die entsprechenden Definitionen, Theoreme, Regeln und Formeln, begleitet von Beispielen und Hinweisen, findet man schnell. Zu diesem Zweck dient das detaillierte Inhaltsverzeichnis und der aus­ führliche alphabetische Index. Zweitens ist das Buch für eine systematische Lektüre bestimmt. Es beansprucht nicht die Rolle eines Lehrbuches. Beweise werden daher nur in Ausnahmefällen vollständig gegeben. Jedoch kann das Buch als Hilfsmittel für eine erste Auseinandersetzung mit dem Gegenstand dienen. Zu diesem Zweck werden ausführliche Erklärungen der Grund­ begriffe gebracht, so etwa: der Begriff des Skalarprodukts (§ 104), des Grenzwerts (§ 203-206), des Differentials (§ 228-235), der un­ endlichen Reihe (§ 270, 366-370). Zum selben Zweck werden alle Regeln durch zahlreiche Beispiele illustriert, die einen organischen Bestandteil dieses Buches bilden (s. die Paragraphen 50-62, 134, 149, 264-266, 369, 422, 418, 498, usw.). Sie erklären die Anwendung der Regeln, wann eine Regel ihre Gültigkeit verliert, welche Fehler man zu vermeiden hat (§ 290,339,340,379, u. a.).
84.99 In Stock
Höhere Mathematik griffbereit: Definitionen Theoreme Beispiele

Höhere Mathematik griffbereit: Definitionen Theoreme Beispiele

by Mark Ja. Vygodskij
Höhere Mathematik griffbereit: Definitionen Theoreme Beispiele

Höhere Mathematik griffbereit: Definitionen Theoreme Beispiele

by Mark Ja. Vygodskij

Paperback(Softcover reprint of the original 1st ed. 1973)

$84.99 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Dieses Buch stellt die Fortsetzung des Buches "Elementarmathe­ matik - griffbereit" desselben Autors dar. Es umfaßt den gesamten Stoff, der im Grundkurs der höheren Mathematik an den technischen Hochschulen sowie Universitäten gelehrt wird. Das Buch hat eine zweifache Bestimmung. Erstens übermittelt es Auskünfte über sachgemäße Fragen : Was ist ein Vektorprodukt? Wie bestimmt man die Fläche eines Dreh­ körpers? Wie entwickelt man eine Funktion in eine trigonometrische Reihe? usw. Die entsprechenden Definitionen, Theoreme, Regeln und Formeln, begleitet von Beispielen und Hinweisen, findet man schnell. Zu diesem Zweck dient das detaillierte Inhaltsverzeichnis und der aus­ führliche alphabetische Index. Zweitens ist das Buch für eine systematische Lektüre bestimmt. Es beansprucht nicht die Rolle eines Lehrbuches. Beweise werden daher nur in Ausnahmefällen vollständig gegeben. Jedoch kann das Buch als Hilfsmittel für eine erste Auseinandersetzung mit dem Gegenstand dienen. Zu diesem Zweck werden ausführliche Erklärungen der Grund­ begriffe gebracht, so etwa: der Begriff des Skalarprodukts (§ 104), des Grenzwerts (§ 203-206), des Differentials (§ 228-235), der un­ endlichen Reihe (§ 270, 366-370). Zum selben Zweck werden alle Regeln durch zahlreiche Beispiele illustriert, die einen organischen Bestandteil dieses Buches bilden (s. die Paragraphen 50-62, 134, 149, 264-266, 369, 422, 418, 498, usw.). Sie erklären die Anwendung der Regeln, wann eine Regel ihre Gültigkeit verliert, welche Fehler man zu vermeiden hat (§ 290,339,340,379, u. a.).

Product Details

ISBN-13: 9783528083090
Publisher: Vieweg+Teubner Verlag
Publication date: 01/01/1973
Edition description: Softcover reprint of the original 1st ed. 1973
Pages: 782
Product dimensions: 5.00(w) x 7.99(h) x 0.06(d)
Language: German

Table of Contents

Analytische Geometrie in der Ebene.- Analytische Geometrie im Raum.- Die Grundbegriffe der mathematischen Analysis.- Differentialrechnung.- Integralrechnung.- Überblick über ebene und räumliche Kurven.- Unendliche Reihen.- Differential- und Integralrechnung für Funktionen mehrerer Variabler.- Differentialgleichungen.- Einige bemerkenswerte Kurven.- Tabellen.
From the B&N Reads Blog

Customer Reviews