How Does One Cut a Triangle?
This second edition of Alexander Soifer’s How Does One Cut a Triangle? demonstrates how different areas of mathematics can be juxtaposed in the solution of a given problem. The author employs geometry, algebra, trigonometry, linear algebra, and rings to develop a miniature model of mathematical research.

How Does One Cut a Triangle? contains dozens of proofs and counterexamples to a variety of problems, such as a pool table problem, a fifty-dollar problem, a five-point problem, and a joint problem. By proving these examples, the author demonstrates that research is a collection of mathematical ideas that have been developed throughout the course of history.

The author brings mathematics alive by giving the reader a taste of what mathematicians do. His book presents open problems that invite the reader to play the role of the mathematician. By doing so, the author skillfully inspires the discovery of uncharted solutions using his solutions as a guide.

1101515916
How Does One Cut a Triangle?
This second edition of Alexander Soifer’s How Does One Cut a Triangle? demonstrates how different areas of mathematics can be juxtaposed in the solution of a given problem. The author employs geometry, algebra, trigonometry, linear algebra, and rings to develop a miniature model of mathematical research.

How Does One Cut a Triangle? contains dozens of proofs and counterexamples to a variety of problems, such as a pool table problem, a fifty-dollar problem, a five-point problem, and a joint problem. By proving these examples, the author demonstrates that research is a collection of mathematical ideas that have been developed throughout the course of history.

The author brings mathematics alive by giving the reader a taste of what mathematicians do. His book presents open problems that invite the reader to play the role of the mathematician. By doing so, the author skillfully inspires the discovery of uncharted solutions using his solutions as a guide.

49.99 In Stock
How Does One Cut a Triangle?

How Does One Cut a Triangle?

by Alexander Soifer
How Does One Cut a Triangle?

How Does One Cut a Triangle?

by Alexander Soifer

Paperback(2nd ed. 2009)

$49.99 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This second edition of Alexander Soifer’s How Does One Cut a Triangle? demonstrates how different areas of mathematics can be juxtaposed in the solution of a given problem. The author employs geometry, algebra, trigonometry, linear algebra, and rings to develop a miniature model of mathematical research.

How Does One Cut a Triangle? contains dozens of proofs and counterexamples to a variety of problems, such as a pool table problem, a fifty-dollar problem, a five-point problem, and a joint problem. By proving these examples, the author demonstrates that research is a collection of mathematical ideas that have been developed throughout the course of history.

The author brings mathematics alive by giving the reader a taste of what mathematicians do. His book presents open problems that invite the reader to play the role of the mathematician. By doing so, the author skillfully inspires the discovery of uncharted solutions using his solutions as a guide.


Product Details

ISBN-13: 9780387746500
Publisher: Springer New York
Publication date: 09/10/2009
Edition description: 2nd ed. 2009
Pages: 174
Product dimensions: 6.10(w) x 9.25(h) x 0.02(d)

Table of Contents

The Original Book.- A Pool Table, Irrational Numbers, and Integral Independence.- How Does One Cut a Triangle? I.- Excursions in Algebra.- How Does One Cut a Triangle? II.- Excursion in Trigonometry.- Is There Anything Beyond the Solution?.- Pursuit of the Best Result.- Convex Figures and the Function S().- Paul Erd#x0151;s: Our Joint Problems.- Convex Figures and Erd#x0151;os#x2019; Function S().- Developments of the Subsequent 20 Years.- An Alternative Proof of Grand Problem II.- Mikl#x00F3;s Laczkovich on Cutting Triangles.- Matthew Kahle on the Five-Point Problem.- Soifer#x2019;s One-Hundred-Dollar Problem and Mitya Karabash.- Coffee Hour and the Conway#x2013;Soifer Cover-Up.- Farewell to the Reader.
From the B&N Reads Blog

Customer Reviews