Hybrid Metaheuristics: An Emerging Approach to Optimization
Optimization problems are of great importance in many fields. They can be tackled, for example, by approximate algorithms such as metaheuristics. Examples of metaheuristics are simulated annealing, tabu search, evolutionary computation, iterated local search, variable neighborhood search, and ant colony optimization. In recent years it has become evident that a skilled combination of a metaheuristic with other optimization techniques, a so called hybrid metaheuristic, can provide a more efficient behavior and a higher flexibility. This is because hybrid metaheuristics combine their advantages with the complementary strengths of, for example, more classical optimization techniques such as branch and bound or dynamic programming.

The authors involved in this book are among the top researchers in their domain. The book is intended both to provide an overview of hybrid metaheuristics to novices of the field, and to provide researchers from the field with a collection of some of the most interesting recent developments.

1116822500
Hybrid Metaheuristics: An Emerging Approach to Optimization
Optimization problems are of great importance in many fields. They can be tackled, for example, by approximate algorithms such as metaheuristics. Examples of metaheuristics are simulated annealing, tabu search, evolutionary computation, iterated local search, variable neighborhood search, and ant colony optimization. In recent years it has become evident that a skilled combination of a metaheuristic with other optimization techniques, a so called hybrid metaheuristic, can provide a more efficient behavior and a higher flexibility. This is because hybrid metaheuristics combine their advantages with the complementary strengths of, for example, more classical optimization techniques such as branch and bound or dynamic programming.

The authors involved in this book are among the top researchers in their domain. The book is intended both to provide an overview of hybrid metaheuristics to novices of the field, and to provide researchers from the field with a collection of some of the most interesting recent developments.

169.99 In Stock
Hybrid Metaheuristics: An Emerging Approach to Optimization

Hybrid Metaheuristics: An Emerging Approach to Optimization

Hybrid Metaheuristics: An Emerging Approach to Optimization

Hybrid Metaheuristics: An Emerging Approach to Optimization

Paperback(Softcover reprint of hardcover 1st ed. 2008)

$169.99 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Optimization problems are of great importance in many fields. They can be tackled, for example, by approximate algorithms such as metaheuristics. Examples of metaheuristics are simulated annealing, tabu search, evolutionary computation, iterated local search, variable neighborhood search, and ant colony optimization. In recent years it has become evident that a skilled combination of a metaheuristic with other optimization techniques, a so called hybrid metaheuristic, can provide a more efficient behavior and a higher flexibility. This is because hybrid metaheuristics combine their advantages with the complementary strengths of, for example, more classical optimization techniques such as branch and bound or dynamic programming.

The authors involved in this book are among the top researchers in their domain. The book is intended both to provide an overview of hybrid metaheuristics to novices of the field, and to provide researchers from the field with a collection of some of the most interesting recent developments.


Product Details

ISBN-13: 9783642096976
Publisher: Springer Berlin Heidelberg
Publication date: 11/24/2010
Series: Studies in Computational Intelligence , #114
Edition description: Softcover reprint of hardcover 1st ed. 2008
Pages: 290
Product dimensions: 6.10(w) x 9.25(h) x 0.02(d)

Table of Contents

Hybrid Metaheuristics: An Introduction.- Combining (Integer) Linear Programming Techniques and Metaheuristics for Combinatorial Optimization.- The Relation Between Complete and Incomplete Search.- Hybridizations of Metaheuristics With Branch & Bound Derivates.- Very Large-Scale Neighborhood Search: Overview and Case Studies on Coloring Problems.- Hybrids of Constructive Metaheuristics and Constraint Programming: A Case Study with ACO.- Hybrid Metaheuristics for Packing Problems.- Hybrid Metaheuristics for Multi-objective Combinatorial Optimization.- Multilevel Refinement for Combinatorial Optimisation: Boosting Metaheuristic Performance.
From the B&N Reads Blog

Customer Reviews