Hyperbolic Conservation Laws in Continuum Physics
This is a masterly exposition and an encyclopedic presentation of the theory of hyperbolic conservation laws. It illustrates the essential role of continuum thermodynamics in providing motivation and direction for the development of the mathematical theory while also serving as the principal source of applications. The reader is expected to have a certain mathematical sophistication and to be familiar with (at least) the rudiments of analysis and the qualitative theory of partial differential equations, whereas prior exposure to continuum physics is not required. The target group of readers would consist of
(a) experts in the mathematical theory of hyperbolic systems of conservation laws who wish to learn about the connection with classical physics;
(b) specialists in continuum mechanics who may need analytical tools;
(c) experts in numerical analysis who wish to learn the underlying mathematical theory; and
(d) analysts and graduate students who seek introduction to the theory of hyperbolic systems of conservation laws.

This new edition places increased emphasis on hyperbolic systems of balance laws with dissipative source, modeling relaxation phenomena. It also presents an account of recent developments on the Euler equations of compressible gas dynamics. Furthermore, the presentation of a number of topics in the previous edition has been revised, expanded and brought up to date, and has been enriched with new applications to elasticity and differential geometry. The bibliography, also expanded and updated, now comprises close to two thousand titles.

From the reviews of the 3rd edition:

"This is the third edition of the famous book by C.M. Dafermos. His masterly written book is, surely, the most complete exposition in the subject." Evgeniy Panov, Zentralblatt MATH

"A monumental book encompassing all aspects of the mathematical theory of hyperbolic conservation laws, widely recognized as the "Bible" on the subject." Philippe G. LeFloch, Math. Reviews

1123603703
Hyperbolic Conservation Laws in Continuum Physics
This is a masterly exposition and an encyclopedic presentation of the theory of hyperbolic conservation laws. It illustrates the essential role of continuum thermodynamics in providing motivation and direction for the development of the mathematical theory while also serving as the principal source of applications. The reader is expected to have a certain mathematical sophistication and to be familiar with (at least) the rudiments of analysis and the qualitative theory of partial differential equations, whereas prior exposure to continuum physics is not required. The target group of readers would consist of
(a) experts in the mathematical theory of hyperbolic systems of conservation laws who wish to learn about the connection with classical physics;
(b) specialists in continuum mechanics who may need analytical tools;
(c) experts in numerical analysis who wish to learn the underlying mathematical theory; and
(d) analysts and graduate students who seek introduction to the theory of hyperbolic systems of conservation laws.

This new edition places increased emphasis on hyperbolic systems of balance laws with dissipative source, modeling relaxation phenomena. It also presents an account of recent developments on the Euler equations of compressible gas dynamics. Furthermore, the presentation of a number of topics in the previous edition has been revised, expanded and brought up to date, and has been enriched with new applications to elasticity and differential geometry. The bibliography, also expanded and updated, now comprises close to two thousand titles.

From the reviews of the 3rd edition:

"This is the third edition of the famous book by C.M. Dafermos. His masterly written book is, surely, the most complete exposition in the subject." Evgeniy Panov, Zentralblatt MATH

"A monumental book encompassing all aspects of the mathematical theory of hyperbolic conservation laws, widely recognized as the "Bible" on the subject." Philippe G. LeFloch, Math. Reviews

249.99 In Stock
Hyperbolic Conservation Laws in Continuum Physics

Hyperbolic Conservation Laws in Continuum Physics

by Constantine M. Dafermos
Hyperbolic Conservation Laws in Continuum Physics

Hyperbolic Conservation Laws in Continuum Physics

by Constantine M. Dafermos

Paperback(Softcover reprint of the original 4th ed. 2016)

$249.99 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
    Not Eligible for Free Shipping
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

This is a masterly exposition and an encyclopedic presentation of the theory of hyperbolic conservation laws. It illustrates the essential role of continuum thermodynamics in providing motivation and direction for the development of the mathematical theory while also serving as the principal source of applications. The reader is expected to have a certain mathematical sophistication and to be familiar with (at least) the rudiments of analysis and the qualitative theory of partial differential equations, whereas prior exposure to continuum physics is not required. The target group of readers would consist of
(a) experts in the mathematical theory of hyperbolic systems of conservation laws who wish to learn about the connection with classical physics;
(b) specialists in continuum mechanics who may need analytical tools;
(c) experts in numerical analysis who wish to learn the underlying mathematical theory; and
(d) analysts and graduate students who seek introduction to the theory of hyperbolic systems of conservation laws.

This new edition places increased emphasis on hyperbolic systems of balance laws with dissipative source, modeling relaxation phenomena. It also presents an account of recent developments on the Euler equations of compressible gas dynamics. Furthermore, the presentation of a number of topics in the previous edition has been revised, expanded and brought up to date, and has been enriched with new applications to elasticity and differential geometry. The bibliography, also expanded and updated, now comprises close to two thousand titles.

From the reviews of the 3rd edition:

"This is the third edition of the famous book by C.M. Dafermos. His masterly written book is, surely, the most complete exposition in the subject." Evgeniy Panov, Zentralblatt MATH

"A monumental book encompassing all aspects of the mathematical theory of hyperbolic conservation laws, widely recognized as the "Bible" on the subject." Philippe G. LeFloch, Math. Reviews


Product Details

ISBN-13: 9783662570111
Publisher: Springer Berlin Heidelberg
Publication date: 05/30/2018
Series: Grundlehren der mathematischen Wissenschaften , #325
Edition description: Softcover reprint of the original 4th ed. 2016
Pages: 826
Product dimensions: 6.10(w) x 9.25(h) x (d)

About the Author

Professor Dafermos received a Diploma in Civil Engineering from the National Technical University of Athens (1964) and a Ph.D. in Mechanics from the Johns Hopkins University (1967). He has served as Assistant Professor at Cornell University (1968-1971),and as Associate Professor (1971-1975) and Professor (1975- present) in the Division of Applied Mathematics at Brown University. In addition, Professor Dafermos has served as Director of the Lefschetz Center of Dynamical Systems (1988-1993, 2006-2007), as Chairman of the Society for Natural Philosophy (1977-1978) and as Secretary of the International Society for the Interaction of Mathematics and Mechanics. Since 1984, he has been the Alumni-Alumnae University Professor at Brown.

In addition to several honorary degrees, he has received the SIAM W.T. and Idalia Reid Prize (2000), the Cataldo e Angiola Agostinelli Prize of the Accademia Nazionale dei Lincei (2011), the Galileo Medal of the City of Padua (2012), and the Prize of the International Society for the Interaction of Mechanics and Mathematics (2014). He was elected a Fellow of SIAM (2009) and a Fellow of the AMS (2013). In 2016 he received the Wiener Prize, awarded jointly by the American Mathematical Society (AMS) and the Society for Industrial and Applied Mathematics (SIAM).

Table of Contents

I Balance Laws. - II Introduction to Continuum Physics. - III Hyperbolic Systems of Balance Laws. - IV The Cauchy Problem. - V Entropy and the Stability of Classical Solutions. - VI The L1 Theory for Scalar Conservation Laws. - VII Hyperbolic Systems of Balance Laws in One-Space Dimension. - VIII Admissible Shocks. - IX Admissible Wave Fans and the Riemann Problem. - X Generalized Characteristics. - XI Scalar Conservation Laws in One Space Dimension. - XII Genuinely Nonlinear Systems of Two Conservation Laws. - XIII The Random Choice Method. - XIV The Front Tracking Method and Standard Riemann Semigroups. - XV Construction of BV Solutions by the Vanishing Viscosity Method. - XVI BV Solutions for Systems of Balance Laws. - XVII Compensated Compactness. - XVIII Steady and Self-similar Solutions in Multi-Space Dimensions. - Bibliography. - Author Index. - Subject Index.

From the B&N Reads Blog

Customer Reviews