Table of Contents
Notations xi
1 Introduction and Motivations 1
1.1 Introduction 1
1.2 Motivational Models 8
1.2.1 Kruger-Thiemer Model 8
1.2.2 Lotka-Volterra Model 8
1.2.3 Pulse Vaccination Model 9
1.2.4 Management Model 9
1.2.5 Some Examples in Economics and Biomathematics 10
2 Preliminaries 11
2.1 Some Definitions 11
2.2 Some Properties in Fréchet Spaces 12
2.3 Some Properties of Set-valued Maps 13
2.3.1 Hausdorff Metric Topology 15
2.3.2 Vietoris Topology 18
2.3.3 Continuity Concepts and Their Relations 20
2.3.4 Selection Functions and Selection Theorems 28
2.3.5 Hausdorff Continuity 30
2.3.6 Measurable Multifunctions 32
2.3.7 Decomposable Selection 35
2.4 Fixed Point Theorems 36
2.5 Measures of Noncompactness: MNC 37
2.6 Semigroups 40
2.6.1 C0-semigroups 40
2.6.2 Integrated Semigroups 42
2.6.3 Examples 44
2.7 Extrapolation Spaces 45
3 FDEs with Infinite Delay 47
3.1 First Order FDEs 47
3.1.1 Examples of Phase Spaces 48
3.1.2 Existence and Uniqueness on Compact Intervals 50
3.1.3 An Example 57
3.2 FDEs with Multiple Delays 58
3.2.1 Existence and Uniqueness Result on a Compact Interval 58
3.2.2 Global Existence and Uniqueness Result 65
3.3 Stability 66
3.3.1 Stability Result 67
3.4 Second Order Impulsive FDEs 69
3.4.1 Existence and Uniqueness Results 71
3.5 Global Existence and Uniqueness Result 76
3.5.1 Uniqueness Result 77
3.5.2 Example 82
3.5.3 Stability 83
4 Boundary Value Problems on Infinite Intervals 86
4.1 Introduction 86
4.1.1 Existence Result 87
4.1.2 Uniqueness Result 92
4.1.3 Example 96
5 Differential Inclusions 98
5.1 Introduction 98
5.1.1 Filippov's Theorem 98
5.1.2 Relaxation Theorem 111
5.2 Functional Differential Inclusions 113
5.2.1 Filippov's Theorem for FDIs 114
5.2.2 Some Properties of Solution Sets 123
5.3 Upper Semicontinuity without Convexity 125
5.3.1 Nonconvex Theorem and Upper Semicontinuity 126
5.3.2 An Application 130
5.4 Inclusions with Dissipative Right Hand Side 131
5.4.1 Existence and Uniqueness Result 131
5.5 Directionally Continuous Selection and IDIs 136
5.5.1 Directional Continuity 136
6 Differential Inclusions with Infinite Delay 140
6.1 Existence Results 140
6.2 Boundary Differential Inclusions 150
7 Impulsive FDEs with Variable Times 154
7.1 Introduction 154
7.1.1 Existence Results 154
7.1.2 Neutral Functional Differential Equations 155
7.2 Impulsive Hyperbolic Differential Inclusions with Infinite Delay 156
7.3 Existence Results 157
7.3.1 Phase Spaces 157
7.3.2 The Nonconvex Case 168
8 Neutral Differential Inclusions 171
8.1 Filippov's Theorem 171
8.2 The Relaxed Problem 182
8.2.1 Existence and Compactness Result: an MNC Approach 189
9 Topology and Geometry of Solution Sets 199
9.1 Background in Geometric Topology 199
9.2 Aronszajn Type Results 201
9.2.1 Solution Sets for Impulsive Differential Equations 206
9.3 Solution Sets of Differential Inclusions 208
9.4 σ-selectionable Multivalued Maps 208
9.4.1 Contractible and Rδ-contractible 212
9.4.2 Rδ-sets 218
9.5 Impulsive DIs on Proximate Retracts 219
9.5.1 Viable Solution 220
9.6 Periodic Problems 226
9.6.1 Poincaré Translation Operator 226
9.6.2 Existence Result 227
9.7 Solution Set for Nonconvex Case 231
9.7.1 Continuous Selection and AR of Solution Sets 232
9.8 The Terminal Problem 245
9.8.1 Existence and Solution Set 245
10 Impulsive Semilinear Differential Inclusions 254
10.1 Nondensely Defined Operators 254
10.2 Integral Solutions 255
10.3 Exact Controllability 267
10.3.1 Controllability of Impulsive FDIs 267
10.3.2 Controllability of Impulsive Neutral FDIs 276
10.4 Controllability in Extrapolation Spaces 282
10.5 Second Order Impulsive Semilinear FDIs 290
10.5.1 Mild Solutions 291
10.5.2 Filippov's Theorem 292
10.5.3 Filippov-Wazewski's Theorem 303
11 Selected Topics 306
11.1 Stochastic Differential Equations 306
11.1.1 Itô Integral 307
11.1.2 Definition of a Mild Solution 308
11.1.3 Existence and Uniqueness 311
11.1.4 Global Existence and Uniqueness 321
11.2 Impulsive Sweeping Processes 327
11.2.1 Preliminaries in Nonsmooth Analysis 327
11.2.2 Uniqueness Result 328
11.3 Integral Inclusions of Volterra Type in Banach Spaces 331
11.3.1 Resolvent Family 332
11.3.2 Existence results 334
11.3.3 The Convex Case: an MNC Approach 339
11.3.4 The Nonconvex Case 342
11.4 Filippov's Theorem 346
11.4.1 Filippov's Theorem on a Bounded Interval 346
11.5 The Relaxed Problem 351
Appendix 357
A.1 Cech Homology Functor with Compact Carriers 357
A.2 The Bochner Integral 359
A.3 Absolutely Continuous Functions 361
A.4 Compactness Criteria in C([a, b], E), Cb([0, ∞), E), and PC([a, b], E) 363
A.5 Weak-compactness in L1 365
A.6 Proper Maps and Vector Fields 367
A.7 Fundamental Theorems in Functional Analysis 367
Bibliography 369
Index 399