Interdisciplinary Approaches To Robot Learning
Robots are being used in increasingly complicated and demanding tasks, often in environments that are complex or even hostile. Underwater, space and volcano exploration are just some of the activities that robots are taking part in, mainly because the environments that are being explored are dangerous for humans. Robots can also inhabit dynamic environments, for example to operate among humans, not just in factories, but also taking on more active roles. Recently, for instance, they have made their way into the home entertainment market. Given the variety of situations that robots will be placed in, learning becomes increasingly important.Robot learning is essentially about equipping robots with the capacity to improve their behaviour over time, based on their incoming experiences. The papers in this volume present a variety of techniques. Each paper provides a mini-introduction to a subfield of robot learning. Some also give a fine introduction to the field of robot learning as a whole. There is one unifying aspect to the work reported in the book, namely its interdisciplinary nature, especially in the combination of robotics, computer science and biology. This approach has two important benefits: first, the study of learning in biological systems can provide robot learning scientists and engineers with valuable insights into learning mechanisms of proven functionality and versatility; second, computational models of learning in biological systems, and their implementation in simulated agents and robots, can provide researchers of biological systems with a powerful platform for the development and testing of learning theories.
1147566380
Interdisciplinary Approaches To Robot Learning
Robots are being used in increasingly complicated and demanding tasks, often in environments that are complex or even hostile. Underwater, space and volcano exploration are just some of the activities that robots are taking part in, mainly because the environments that are being explored are dangerous for humans. Robots can also inhabit dynamic environments, for example to operate among humans, not just in factories, but also taking on more active roles. Recently, for instance, they have made their way into the home entertainment market. Given the variety of situations that robots will be placed in, learning becomes increasingly important.Robot learning is essentially about equipping robots with the capacity to improve their behaviour over time, based on their incoming experiences. The papers in this volume present a variety of techniques. Each paper provides a mini-introduction to a subfield of robot learning. Some also give a fine introduction to the field of robot learning as a whole. There is one unifying aspect to the work reported in the book, namely its interdisciplinary nature, especially in the combination of robotics, computer science and biology. This approach has two important benefits: first, the study of learning in biological systems can provide robot learning scientists and engineers with valuable insights into learning mechanisms of proven functionality and versatility; second, computational models of learning in biological systems, and their implementation in simulated agents and robots, can provide researchers of biological systems with a powerful platform for the development and testing of learning theories.
85.0 In Stock
Interdisciplinary Approaches To Robot Learning

Interdisciplinary Approaches To Robot Learning

Interdisciplinary Approaches To Robot Learning

Interdisciplinary Approaches To Robot Learning

Hardcover

$85.00 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Robots are being used in increasingly complicated and demanding tasks, often in environments that are complex or even hostile. Underwater, space and volcano exploration are just some of the activities that robots are taking part in, mainly because the environments that are being explored are dangerous for humans. Robots can also inhabit dynamic environments, for example to operate among humans, not just in factories, but also taking on more active roles. Recently, for instance, they have made their way into the home entertainment market. Given the variety of situations that robots will be placed in, learning becomes increasingly important.Robot learning is essentially about equipping robots with the capacity to improve their behaviour over time, based on their incoming experiences. The papers in this volume present a variety of techniques. Each paper provides a mini-introduction to a subfield of robot learning. Some also give a fine introduction to the field of robot learning as a whole. There is one unifying aspect to the work reported in the book, namely its interdisciplinary nature, especially in the combination of robotics, computer science and biology. This approach has two important benefits: first, the study of learning in biological systems can provide robot learning scientists and engineers with valuable insights into learning mechanisms of proven functionality and versatility; second, computational models of learning in biological systems, and their implementation in simulated agents and robots, can provide researchers of biological systems with a powerful platform for the development and testing of learning theories.

Product Details

ISBN-13: 9789810243203
Publisher: World Scientific Publishing Company, Incorporated
Publication date: 06/13/2000
Series: World Scientific Series In Robotics And Intelligent Systems , #24
Pages: 220
Product dimensions: 6.30(w) x 8.60(h) x 0.80(d)
From the B&N Reads Blog

Customer Reviews