An Introduction to Bayesian Analysis: Theory and Methods
Though there are many recent additions to graduate-level introductory books on Bayesian analysis, none has quite our blend of theory, methods, and applications. We believe a beginning graduate student taking a Bayesian course or just trying to find out what it means to be a Bayesian ought to have some familiarity with all three aspects. More specialization can come later. Each of us has taught a course like this at Indian Statistical Institute or Purdue. In fact, at least partly, the book grew out of those courses. We would also like to refer to the review (Ghosh and Samanta (2002b)) that first made us think of writing a book. The book contains somewhat more material than can be covered in a single semester. We have done this intentionally, so that an instructor has some choice as to what to cover as well as which of the three aspects to emphasize. Such a choice is essential for the instructor. The topics include several results or methods that have not appeared in a graduate text before. In fact, the book can be used also as a second course in Bayesian analysis if the instructor supplies more details. Chapter 1 provides a quick review of classical statistical inference. Some knowledge of this is assumed when we compare different paradigms. Following this, an introduction to Bayesian inference is given in Chapter 2 emphasizing the need for the Bayesian approach to statistics.
1149248129
An Introduction to Bayesian Analysis: Theory and Methods
Though there are many recent additions to graduate-level introductory books on Bayesian analysis, none has quite our blend of theory, methods, and applications. We believe a beginning graduate student taking a Bayesian course or just trying to find out what it means to be a Bayesian ought to have some familiarity with all three aspects. More specialization can come later. Each of us has taught a course like this at Indian Statistical Institute or Purdue. In fact, at least partly, the book grew out of those courses. We would also like to refer to the review (Ghosh and Samanta (2002b)) that first made us think of writing a book. The book contains somewhat more material than can be covered in a single semester. We have done this intentionally, so that an instructor has some choice as to what to cover as well as which of the three aspects to emphasize. Such a choice is essential for the instructor. The topics include several results or methods that have not appeared in a graduate text before. In fact, the book can be used also as a second course in Bayesian analysis if the instructor supplies more details. Chapter 1 provides a quick review of classical statistical inference. Some knowledge of this is assumed when we compare different paradigms. Following this, an introduction to Bayesian inference is given in Chapter 2 emphasizing the need for the Bayesian approach to statistics.
129.0 In Stock
An Introduction to Bayesian Analysis: Theory and Methods

An Introduction to Bayesian Analysis: Theory and Methods

An Introduction to Bayesian Analysis: Theory and Methods

An Introduction to Bayesian Analysis: Theory and Methods

Paperback(Softcover reprint of hardcover 1st ed. 2006)

$129.00 
  • SHIP THIS ITEM
    In stock. Ships in 6-10 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

Though there are many recent additions to graduate-level introductory books on Bayesian analysis, none has quite our blend of theory, methods, and applications. We believe a beginning graduate student taking a Bayesian course or just trying to find out what it means to be a Bayesian ought to have some familiarity with all three aspects. More specialization can come later. Each of us has taught a course like this at Indian Statistical Institute or Purdue. In fact, at least partly, the book grew out of those courses. We would also like to refer to the review (Ghosh and Samanta (2002b)) that first made us think of writing a book. The book contains somewhat more material than can be covered in a single semester. We have done this intentionally, so that an instructor has some choice as to what to cover as well as which of the three aspects to emphasize. Such a choice is essential for the instructor. The topics include several results or methods that have not appeared in a graduate text before. In fact, the book can be used also as a second course in Bayesian analysis if the instructor supplies more details. Chapter 1 provides a quick review of classical statistical inference. Some knowledge of this is assumed when we compare different paradigms. Following this, an introduction to Bayesian inference is given in Chapter 2 emphasizing the need for the Bayesian approach to statistics.

Product Details

ISBN-13: 9781441923035
Publisher: Springer New York
Publication date: 11/19/2010
Series: Springer Texts in Statistics , #147
Edition description: Softcover reprint of hardcover 1st ed. 2006
Pages: 354
Product dimensions: 6.10(w) x 9.25(h) x 0.04(d)

Table of Contents

Statistical Preliminaries.- Bayesian Inference and Decision Theory.- Utility, Prior, and Bayesian Robustness.- Large Sample Methods.- Choice of Priors for Low-dimensional Parameters.- Hypothesis Testing and Model Selection.- Bayesian Computations.- Some Common Problems in Inference.- High-dimensional Problems.- Some Applications.
From the B&N Reads Blog

Customer Reviews