Introduction to BioMEMS
The entire scope of the BioMEMS field—at your fingertips
Helping to educate the new generation of engineers and biologists, Introduction to BioMEMS explains how certain problems in biology and medicine benefit from and often require the miniaturization of devices. The book covers the whole breadth of this dynamic field, including classical microfabrication, microfluidics, tissue engineering, cell-based and noncell-based devices, and implantable systems. It focuses on high-impact, creative work encompassing all the scales of life—from biomolecules to cells, tissues, and organisms.

Brilliant color presentation
Avoiding the overwhelming details found in many engineering and physics texts, this groundbreaking book—in color throughout—includes only the most essential formulas as well as many noncalculation-based exercises. Important terms are highlighted in bold and defined in a glossary. The text contains more than 400 color figures, most of which are from the original researchers.

Coverage of both historical perspectives and the latest developments
Developed from the author’s long-running course, this classroom-tested text gives readers a vivid picture of how the field has grown by presenting historical perspectives and a timeline of seminal discoveries. It also describes numerous state-of-the-art biomedical applications that benefit from "going small," including devices that record the electrical activity of brain cells, measure the diffusion of molecules in microfluidic channels, and allow for high-throughput studies of gene expression.

1127960859
Introduction to BioMEMS
The entire scope of the BioMEMS field—at your fingertips
Helping to educate the new generation of engineers and biologists, Introduction to BioMEMS explains how certain problems in biology and medicine benefit from and often require the miniaturization of devices. The book covers the whole breadth of this dynamic field, including classical microfabrication, microfluidics, tissue engineering, cell-based and noncell-based devices, and implantable systems. It focuses on high-impact, creative work encompassing all the scales of life—from biomolecules to cells, tissues, and organisms.

Brilliant color presentation
Avoiding the overwhelming details found in many engineering and physics texts, this groundbreaking book—in color throughout—includes only the most essential formulas as well as many noncalculation-based exercises. Important terms are highlighted in bold and defined in a glossary. The text contains more than 400 color figures, most of which are from the original researchers.

Coverage of both historical perspectives and the latest developments
Developed from the author’s long-running course, this classroom-tested text gives readers a vivid picture of how the field has grown by presenting historical perspectives and a timeline of seminal discoveries. It also describes numerous state-of-the-art biomedical applications that benefit from "going small," including devices that record the electrical activity of brain cells, measure the diffusion of molecules in microfluidic channels, and allow for high-throughput studies of gene expression.

130.0 In Stock
Introduction to BioMEMS

Introduction to BioMEMS

by Albert Folch
Introduction to BioMEMS

Introduction to BioMEMS

by Albert Folch

Hardcover(New Edition)

$130.00 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

The entire scope of the BioMEMS field—at your fingertips
Helping to educate the new generation of engineers and biologists, Introduction to BioMEMS explains how certain problems in biology and medicine benefit from and often require the miniaturization of devices. The book covers the whole breadth of this dynamic field, including classical microfabrication, microfluidics, tissue engineering, cell-based and noncell-based devices, and implantable systems. It focuses on high-impact, creative work encompassing all the scales of life—from biomolecules to cells, tissues, and organisms.

Brilliant color presentation
Avoiding the overwhelming details found in many engineering and physics texts, this groundbreaking book—in color throughout—includes only the most essential formulas as well as many noncalculation-based exercises. Important terms are highlighted in bold and defined in a glossary. The text contains more than 400 color figures, most of which are from the original researchers.

Coverage of both historical perspectives and the latest developments
Developed from the author’s long-running course, this classroom-tested text gives readers a vivid picture of how the field has grown by presenting historical perspectives and a timeline of seminal discoveries. It also describes numerous state-of-the-art biomedical applications that benefit from "going small," including devices that record the electrical activity of brain cells, measure the diffusion of molecules in microfluidic channels, and allow for high-throughput studies of gene expression.


Product Details

ISBN-13: 9781439818398
Publisher: Taylor & Francis
Publication date: 08/21/2012
Edition description: New Edition
Pages: 528
Product dimensions: 10.20(w) x 7.30(h) x 0.90(d)

About the Author

Albert Folch is an associate professor in the Department of Bioengineering at the University of Washington. Dr. Folch has previously worked as a postdoc researcher at Harvard University’s Center for Engineering in Medicine, a postdoc researcher at MIT, and a visiting scientist at the Lawrence Berkeley National Laboratory. He is a recipient of an NSF CAREER Award and is on the advisory board of Lab on a Chip. His research focuses on the interface between cell biology and microfluidics.

Table of Contents

How Do We Make Small Things? Micropatterning of Substrates and Cells. Microfluidics. Molecular Biology on a Chip. Cell-Based Chips for Biotechnology. BioMEMS for Cell Biology. Tissue Microengineering. Implantable Microdevices. Appendix. Index.

From the B&N Reads Blog

Customer Reviews