Introduction to Higher-Order Categorical Logic
In this volume, Lambek and Scott reconcile two different viewpoints of the foundations of mathematics, namely mathematical logic and category theory. In Part I, they show that typed lambda-calculi, a formulation of higher-order logic, and cartesian closed categories, are essentially the same. Part II demonstrates that another formulation of higher-order logic, (intuitionistic) type theories, is closely related to topos theory. Part III is devoted to recursive functions. Numerous applications of the close relationship between traditional logic and the algebraic language of category theory are given. The authors have included an introduction to category theory and develop the necessary logic as required, making the book essentially self-contained. Detailed historical references are provided throughout, and each section concludeds with a set of exercises.
1100943087
Introduction to Higher-Order Categorical Logic
In this volume, Lambek and Scott reconcile two different viewpoints of the foundations of mathematics, namely mathematical logic and category theory. In Part I, they show that typed lambda-calculi, a formulation of higher-order logic, and cartesian closed categories, are essentially the same. Part II demonstrates that another formulation of higher-order logic, (intuitionistic) type theories, is closely related to topos theory. Part III is devoted to recursive functions. Numerous applications of the close relationship between traditional logic and the algebraic language of category theory are given. The authors have included an introduction to category theory and develop the necessary logic as required, making the book essentially self-contained. Detailed historical references are provided throughout, and each section concludeds with a set of exercises.
86.0 In Stock
Introduction to Higher-Order Categorical Logic

Introduction to Higher-Order Categorical Logic

Introduction to Higher-Order Categorical Logic

Introduction to Higher-Order Categorical Logic

Paperback(Reprint)

$86.00 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

In this volume, Lambek and Scott reconcile two different viewpoints of the foundations of mathematics, namely mathematical logic and category theory. In Part I, they show that typed lambda-calculi, a formulation of higher-order logic, and cartesian closed categories, are essentially the same. Part II demonstrates that another formulation of higher-order logic, (intuitionistic) type theories, is closely related to topos theory. Part III is devoted to recursive functions. Numerous applications of the close relationship between traditional logic and the algebraic language of category theory are given. The authors have included an introduction to category theory and develop the necessary logic as required, making the book essentially self-contained. Detailed historical references are provided throughout, and each section concludeds with a set of exercises.

Product Details

ISBN-13: 9780521356534
Publisher: Cambridge University Press
Publication date: 03/25/1988
Series: Cambridge Studies in Advanced Mathematics , #7
Edition description: Reprint
Pages: 304
Product dimensions: 5.91(w) x 8.94(h) x 0.71(d)

Table of Contents

Preface; Part I. Introduction to Category Theory: Part II. Cartesian Closed Categories and Calculus: Part III. Type Theory and Toposes: Part IV. Representing Numerical Functions in Various Categories; Bibliography; Author index; Subject index.
From the B&N Reads Blog

Customer Reviews