Iteration Theories: The Equational Logic of Iterative Processes

Iteration Theories: The Equational Logic of Iterative Processes

by Stephen L. Bloom, Zoltan Esik

Paperback(Softcover reprint of the original 1st ed. 1993)

$159.00
Choose Expedited Shipping at checkout for guaranteed delivery by Monday, January 21

Product Details

ISBN-13: 9783642780363
Publisher: Springer Berlin Heidelberg
Publication date: 12/16/2011
Series: Monographs in Theoretical Computer Science. An EATCS Series
Edition description: Softcover reprint of the original 1st ed. 1993
Pages: 630
Product dimensions: 6.10(w) x 9.25(h) x 0.05(d)

About the Author

Stephen L.Bloom is a practicing attorney and a frequent speaker on Christianity and the law. He is an adjunct instructor at Messiah College, where he teaches courses in personal finance and the economics of social issues, and serves as a consultant at the United Methodist Stewardship Foundation of Central Pennsylvania. He is the former host of the "Practical Counsel-Christian Perspective" radio program. Mr.Bloom has been actively involved in the leadership of numerous community, church, and ministry organizations.

Table of Contents

1 Mathematical Motivation.- 2 Why Iteration Theories?.- 3 Suggestions for the Impatient Reader.- 4 A Disclaimer.- 5 Numbering.- 1 Preliminary Facts.- 1 Sets and Functions.- 2 Posets.- 3 Categories.- 4 2-Categories.- 4.1 Cellc is a 2-Category, Too.- 5 ?-Trees.- 2 Varieties and Theories.- 1 S-Algebras.- 2 Terms and Equations.- 3 Theories.- 4 The Theory of a Variety..- 3 Theory Facts.- 1 Pairing and Separated Sum.- 2 Elementary Properties of TH.- 3 Theories as N x N-Sorted Algebras.- 4 Special Coproducts.- 5 Matrix and Matricial Theories.- 5.1 Matrix Theories.- 5.2 Theories of Relations.- 5.3 Matricial Theories.- 5.4 Sequacious Relations.- 5.5 Sequacious Functions.- 6 Pullbacks and Pushouts of Base Morphisms.- 7 2-Theories.- 4 Algebras.- 1 T-algebras.- 1.1 An Example: Algebras of Matrix Theories.- 2 Free Algebras in Tb.- 2.1 The T-algebras Tn.- 2.2 Infinitely Generated Free Algebras in Tb.- 3 Subvarieties of Tb.- 4 The Categories TH and var.- 5 Notes.- 5 Iterative Theories.- 1 Ideal Theories.- 2 Iterative Theories Defined.- 3 Properties of Iteration in Iterative Theories.- 4 Free Iterative Theories.- 5 Notes.- 6 Iteration Theories.- 1 Iteration Theories Defined.- 2 Other Axiomatizations of Iteration Theories.- 2.1 Scalar Axiomatizations.- 3 Theories with a Functorial Dagger.- 4 Pointed Iterative Theories.- 5 Free Iteration Theories.- 6 Constructions on Iteration Theories.- 7 Feedback Theories.- 8 Summary of the Axioms.- 8.1 Axioms for Iteration Theories.- 8.2 Axioms for Conway Theories.- 9 Notes.- 7 Iteration Algebras.- 1 Definitions.- 2 Free Algebras in T†.- 3 The Retraction Lemma.- 4 Some Categorical Facts.- 5 Properties of T†.- 6 A Characterization Theorem.- 7 Strong Iteration Algebras.- 8 Notes.- 8 Continuous Theories.- 1 Ordered Algebraic Theories.- 1.1 Free Ordered Theories.- 2 ?-Continuous Theoriesx.- 2.1 Free ?-Continuous Theories.- 3 Rational Theories.- 4 Initiality and Iteration in 2-Theories.- 5 ?-Continuous 2-Theories.- 5.1 The Definition, with Examples.- 5.2 Initial Algebras Exist.- 5.3 ?-Continuous 2-Theories are Iteration Theories.- 6 Notes.- 9 Matrix Iteration Theories.- 1 Notation.- 2 Properties of the Star Operation.- 3 Matrix Iteration Theories Defined.- 4 Presentations in Matrix Iteration Theories.- 5 The Initial Matrix Iteration Theory.- 6 An Extension Theorem.- 7 Matrix Iteration Theories of Regular Sets.- 8 Notes.- 10 Matricial Iteration Theories.- 1 From Dagger to Star and Omega, and Back.- 2 Matricial Iteration Theories Defined.- 3 Examples.- 3.1 SeqRel(inA).- 3.2 L(X*; X?).- 3.3 RL(X*;X?).- 3.4 CL(X*; X?).- 3.5 RCL(X*;X?).- 3.6 More Commutative Identities.- 4 Additively Closed Subiteration Theories.- 4.1 An A.C. Subiteration Theory of C(X*; X?).- 5 Presentations in Matricial Iteration Theories.- 6 The Initial Matricial Iteration Theory.- 7 The Extension Theorem.- 8 Additively Closed Theories of Regular Languages.- 9 Closed Regular (?-Languages.- 10 Notes.- 11 Presentations.- 1 Presentations in Iteration Theories.- 2 Simulations of Presentations.- 3 Coproducts Revisited.- 4 Notes.- 12 Flowchart Behaviors.- 1 Axiomatizing Sequacious Functions.- 2 Axiomatizing Partial Functions.- 3 Diagonal Theories.- 4 Sequacious Functions with Predicates.- 4.1 The Theory of One Predicate.- 4.2 Several Binary Predicates.- 5 Partial Functions with Predicates.- 6 Notes.- 13 Synchronization Trees.- 1 Theories of Synchronization Trees.- 2 Grove Iteration Theories.- 3 Axiomatizing Synchronization Trees.- 4 Bisimilarity.- 5 Notes.- 14 Floyd-Hoare Logic.- 1 Guards.- 2 Partial Correctness Assertions.- 2.1 An Alternative Definition of n-Guards.- 3 The Standard Example.- 4 Rules for Partial Correctness.- 4.1 Formalization.- 4.2 Formal Rules.- 5 Soundness.- 6 The Standard Example, Continued.- 7 A Floyd-Hoare Calculus for Iteration Theories.- 8 The Standard Example, Again.- 9 Completeness.- 9.1 The Invariant Guard Property.- 9.2 Completeness of Floyd-Hoare Rules.- 9.3 Guarantees of Completeness.- 9.4 Weakest Liberal Preconditions and Completeness.- 9.5 The Cook Completeness Theorem.- 9.6 The Unwinding Property.- 10 Examples.- 10.1 An Example of a Correctness Proof.- 10.2 The Interpolation Property Does Not Imply the Invariant Guard Property.- 10.3 A Non-Expressive Structure with Weakest Liberal Preconditions.- 11 Notes.- List of Symbols.

Customer Reviews

Most Helpful Customer Reviews

See All Customer Reviews