Iterative Methods for Solving Linear Systems / Edition 1

Iterative Methods for Solving Linear Systems / Edition 1

by Anne Greenbaum
ISBN-10:
089871396X
ISBN-13:
2900898713960
Pub. Date:
09/01/1997
Publisher:
SIAM
Iterative Methods for Solving Linear Systems / Edition 1

Iterative Methods for Solving Linear Systems / Edition 1

by Anne Greenbaum
$48.21
Current price is , Original price is $62.0. You
  • SHIP THIS ITEM
    This Item is Not Available
$48.21  $62.00 Save 22% Current price is $48.21, Original price is $62. You Save 22%.
  • SHIP THIS ITEM

    Temporarily Out of Stock Online

    Please check back later for updated availability.

    Note: Access code and/or supplemental material are not guaranteed to be included with used textbook.

Overview

Excellent and coherent discussion. Much recent research has concentrated on the efficient solution of large sparse or structured linear systems using iterative methods. A language loaded with acronyms for a thousand different algorithms has developed, and it is often difficult even for specialists to identify the basic principles involved. Here is a book that focuses on the analysis of iterative methods. The author includes the most useful algorithms from a practical point of view and discusses the mathematical principles behind their derivation and analysis. Several questions are emphasized throughout: Does the method converge? If so, how fast? Is it optimal, among a certain class? If not, can it be shown to be near-optimal? The answers are presented clearly, when they are known, and remaining important open questions are laid out for further study. Greenbaum includes important material on the effect of rounding errors on iterative methods that has not appeared in other books on this subject. Additional important topics include a discussion of the open problem of finding a provably near-optimal short recurrence for non-Hermitian linear systems; the relation of matrix properties such as the field of values and the pseudospectrum to the convergence rate of iterative methods; comparison theorems for preconditioners and discussion of optimal preconditioners of specified forms; introductory material on the analysis of incomplete Cholesky, multigrid, and domain decomposition preconditioners, using the diffusion equation and the neutron transport equation as example problems. A small set of recommended algorithms and implementations is included. This book is appropriate for classroom use at the graduate level, especially for students in numerical analysis. It will also be of interest to specialists in the field of iterative methods and mathematicians in other fields who want to learn more about the numerical solution of large linear systems. Scientists and engineers who solve such linear systems will find that the book provides useful theoretical background. Anne Greenbaum is Professor in the Mathematics Department at the University of Washington.

Product Details

ISBN-13: 2900898713960
Publisher: SIAM
Publication date: 09/01/1997
Series: SIAM Frontiers in Applied Mathematics Series
Edition description: New Edition
Pages: 220
Product dimensions: 6.00(w) x 1.25(h) x 9.00(d)

Table of Contents

List of Algorithms; Preface; 1. Introduction. Brief Overview of the State of the Art; Notation; Review of Relevant Linear Algebra; Part I. Krylov Subspace Approximations. 2. Some Iteration Methods. Simple Iteration; Orthomin(1) and Steepest Descent; Orthomin(2) and CG; Orthodir, MINRES, and GMRES; Derivation of MINRES and CG from the Lanczos Algorithm; 3. Error Bounds for CG, MINRES, and GMRES. Hermitian Problems-CG and MINRES; Non-Hermitian Problems-GMRES; 4. Effects of Finite Precision Arithmetic. Some Numerical Examples; The Lanczos Algorithm; A Hypothetical MINRES/CG Implementation; A Matrix Completion Problem; Orthogonal Polynomials; 5. BiCG and Related Methods. The Two-Sided Lanczos Algorithm; The Biconjugate Gradient Algorithm; The Quasi-Minimal Residual Algorithm; Relation Between BiCG and QMR; The Conjugate Gradient Squared Algorithm; The BiCGSTAB Algorithm; Which Method Should I Use?; 6. Is There A Short Recurrence for a Near-Optimal Approximation? The Faber and Manteuffel Result; Implications; 7. Miscellaneous Issues. Symmetrizing the Problem; Error Estimation and Stopping Criteria; Attainable Accuracy; Multiple Right-Hand Sides and Block Methods; Computer Implementation; Part II. Preconditioners. 8. Overview and Preconditioned Algorithms. 9. Two Example Problems. The Diffusion Equation; The Transport Equation; 10. Comparison of Preconditioners. Jacobi, Gauss—Seidel, SOR; The Perron—Frobenius Theorem; Comparison of Regular Splittings; Regular Splittings Used with the CG Algorithm; Optimal Diagonal and Block Diagonal Preconditioners; 11. Incomplete Decompositions. Incomplete Cholesky Decomposition; Modified Incomplete Cholesky Decomposition; 12. Multigrid and Domain Decomposition Methods. Multigrid Methods; Basic Ideas of Domain Decomposition Methods.

What People are Saying About This

Zdenek Stratkos

This book differs substantially from other books on iterative methods, including those recently published, in that it concentrates on several principles behind the derivation and analysis of the most important methods and preconditioning techniques. Individual algorithms serve as examples illustrating the discussed ideas. Strong emphasis is given to motivation and its relation to problems in other areas of mathematics. .The book speaks in clear language about principal problems in the area of iterative methods. .It represents a comprehensive introduction to the field and stimulates the interest of the reader. It is valuable for students and also for experts working in the area of iterative methods.
— Czech Academy of Sciences, Institute of Computer Science

From the B&N Reads Blog

Customer Reviews