Knowledge graph for Decision Engine
With the advent of Bigdata technologies, healthcare data captured and stored at multiple granular levels and multiple formats. In the healthcare domain, includes hospitals, pharmaceuticals, and insurance companies have an enormous amount of data in structured tables. However, significant amounts of the big data remain underutilized due to data isolation, distribution, and heterogeneity. Despite interconnected tabular data linked together in some way for ML input, challenges are, increased dimensionality, normalization of data which is not natural representation, repetition of data on merging different aggregated data across tables. Machine learning models supposes the observations are not dependent however, the real world information is interconnected. Knowledge graphs and machine learning are two important tools to understand and model complex concepts, while machine learning is a process by which computers learn from data, without being explicitly programmed.
1145652219
Knowledge graph for Decision Engine
With the advent of Bigdata technologies, healthcare data captured and stored at multiple granular levels and multiple formats. In the healthcare domain, includes hospitals, pharmaceuticals, and insurance companies have an enormous amount of data in structured tables. However, significant amounts of the big data remain underutilized due to data isolation, distribution, and heterogeneity. Despite interconnected tabular data linked together in some way for ML input, challenges are, increased dimensionality, normalization of data which is not natural representation, repetition of data on merging different aggregated data across tables. Machine learning models supposes the observations are not dependent however, the real world information is interconnected. Knowledge graphs and machine learning are two important tools to understand and model complex concepts, while machine learning is a process by which computers learn from data, without being explicitly programmed.
48.0 In Stock
Knowledge graph for Decision Engine

Knowledge graph for Decision Engine

by Sridhar Nomula
Knowledge graph for Decision Engine

Knowledge graph for Decision Engine

by Sridhar Nomula

Paperback

$48.00 
  • SHIP THIS ITEM
    In stock. Ships in 1-2 days.
  • PICK UP IN STORE

    Your local store may have stock of this item.

Related collections and offers


Overview

With the advent of Bigdata technologies, healthcare data captured and stored at multiple granular levels and multiple formats. In the healthcare domain, includes hospitals, pharmaceuticals, and insurance companies have an enormous amount of data in structured tables. However, significant amounts of the big data remain underutilized due to data isolation, distribution, and heterogeneity. Despite interconnected tabular data linked together in some way for ML input, challenges are, increased dimensionality, normalization of data which is not natural representation, repetition of data on merging different aggregated data across tables. Machine learning models supposes the observations are not dependent however, the real world information is interconnected. Knowledge graphs and machine learning are two important tools to understand and model complex concepts, while machine learning is a process by which computers learn from data, without being explicitly programmed.

Product Details

ISBN-13: 9786207488865
Publisher: LAP Lambert Academic Publishing
Publication date: 04/29/2024
Pages: 52
Product dimensions: 6.00(w) x 9.00(h) x 0.12(d)
From the B&N Reads Blog

Customer Reviews